CPH 100A: Modeling Images and Volumes: Convolutional Neural Networks

Instructor: Adam Yala, PhD (<u>yala@berkeley.edu</u>)

Agenda

Recap

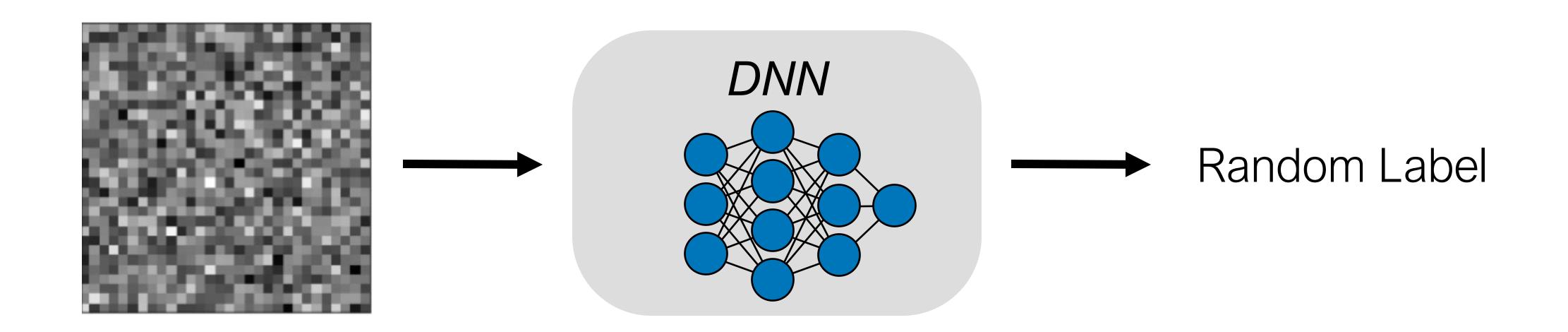
Failure modes of fully-connected neural networks

Convolutions

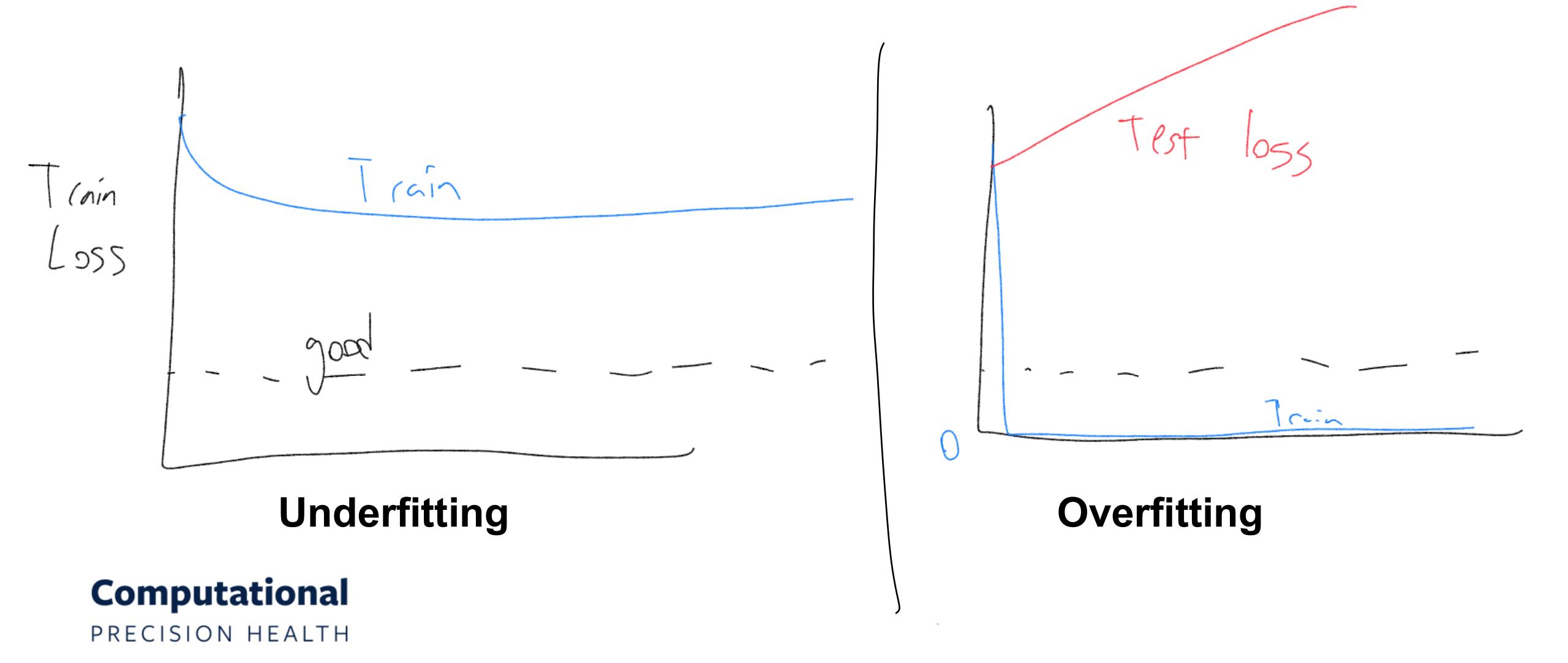
Pooling

CNNs across modalities

Well-trained Networks can learn anything



Failure modes of Neural Network Optimization



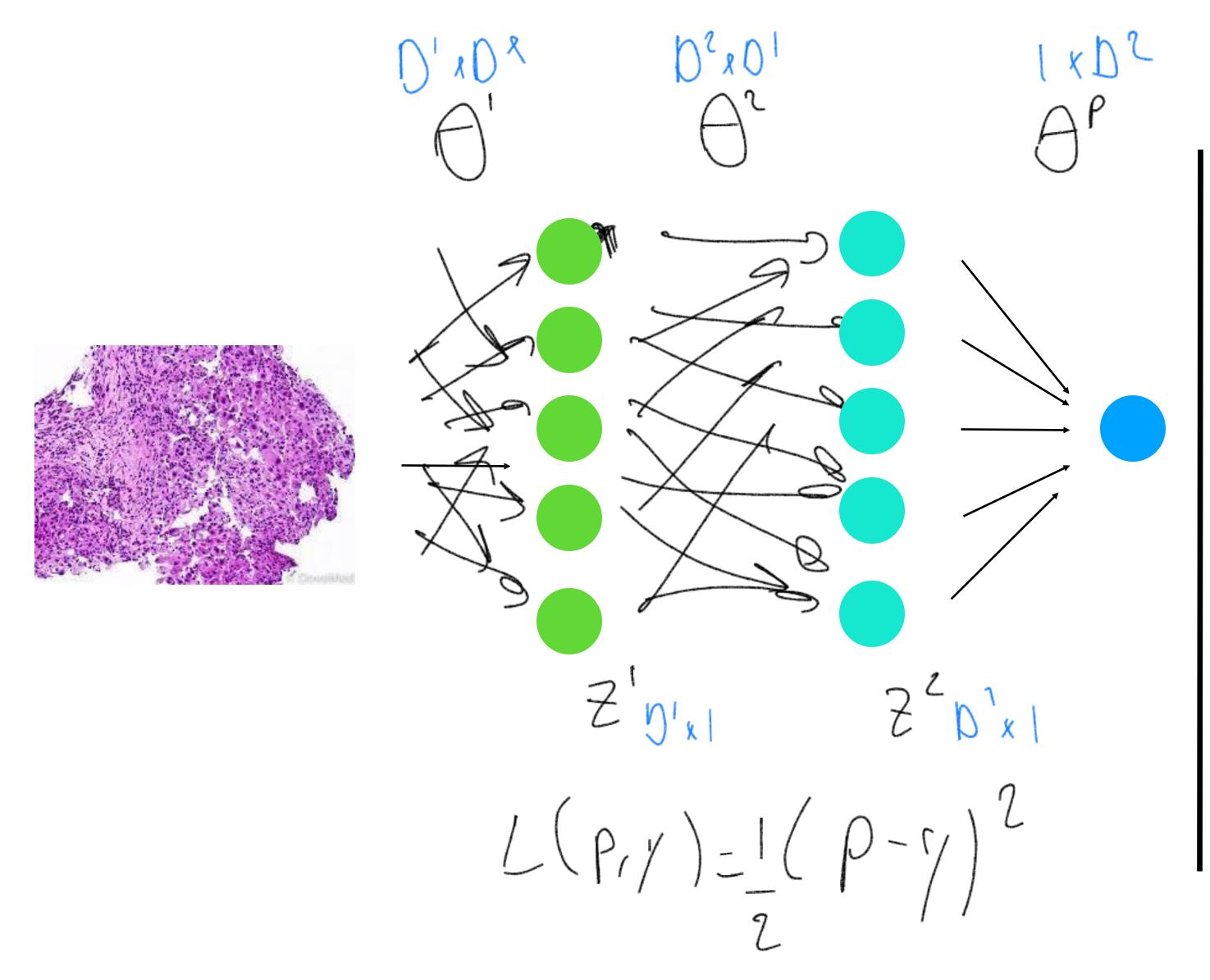
Why did the neural networks fail to train?

Complex Interaction between:

- Initialization
- Hypothesis Class
- Optimizer
- Learning Objective
- Data

Computational

Choosing scales of random init



He init . E ReLV Berkeley UCSF

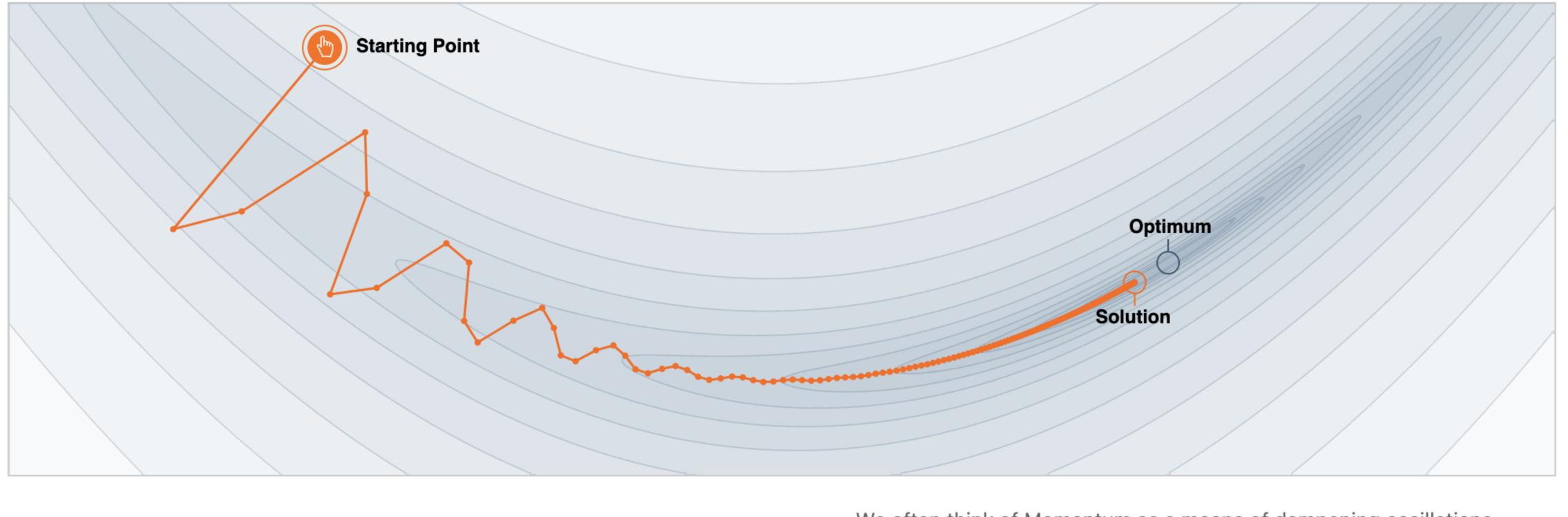
BatchNorm: Preventing activation collapse

Vse Hze!

Now Ze cand
explode!

Residual connections: Skipping training bottlenecks

Momentum: Accelerating SGD

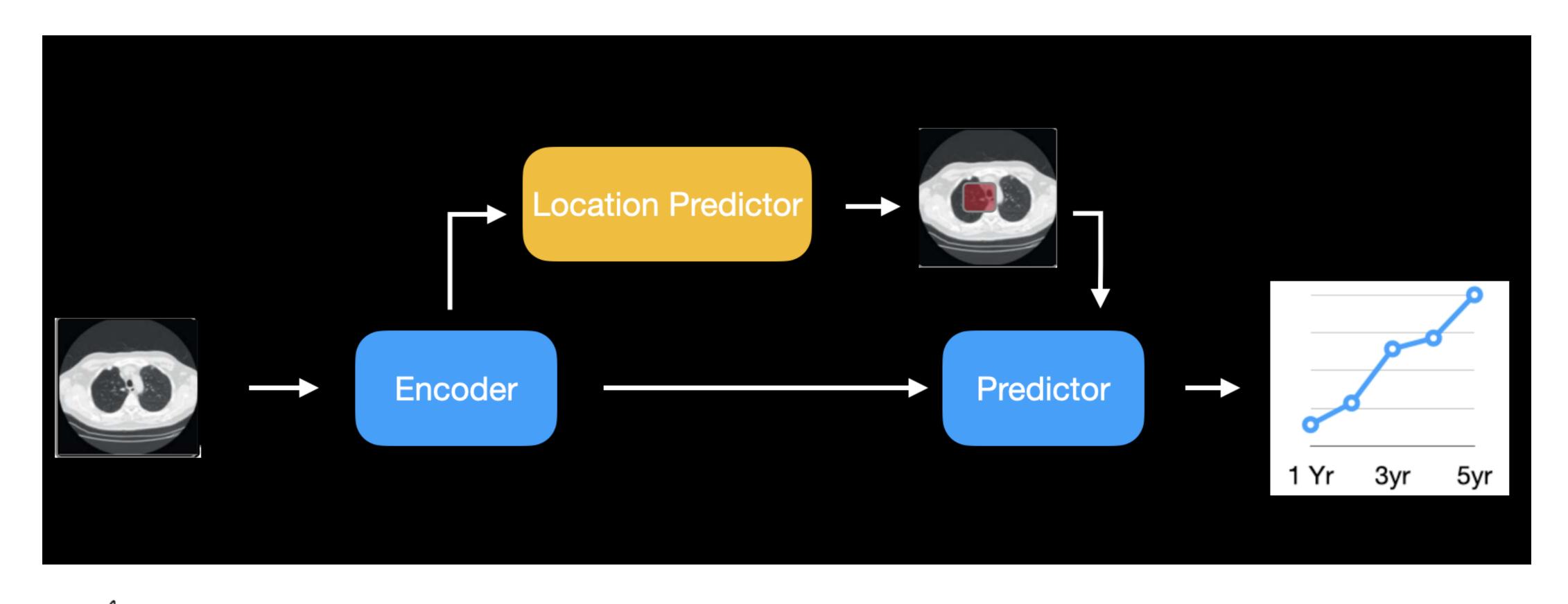


Step-size $\alpha = 0.02$ Momentum $\beta = 0.99$

We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

https://distill.pub/2017/momentum/

Managing overfitting: Adding additional losses



Managing overfitting: Data Augmentation

Agenda

Recap

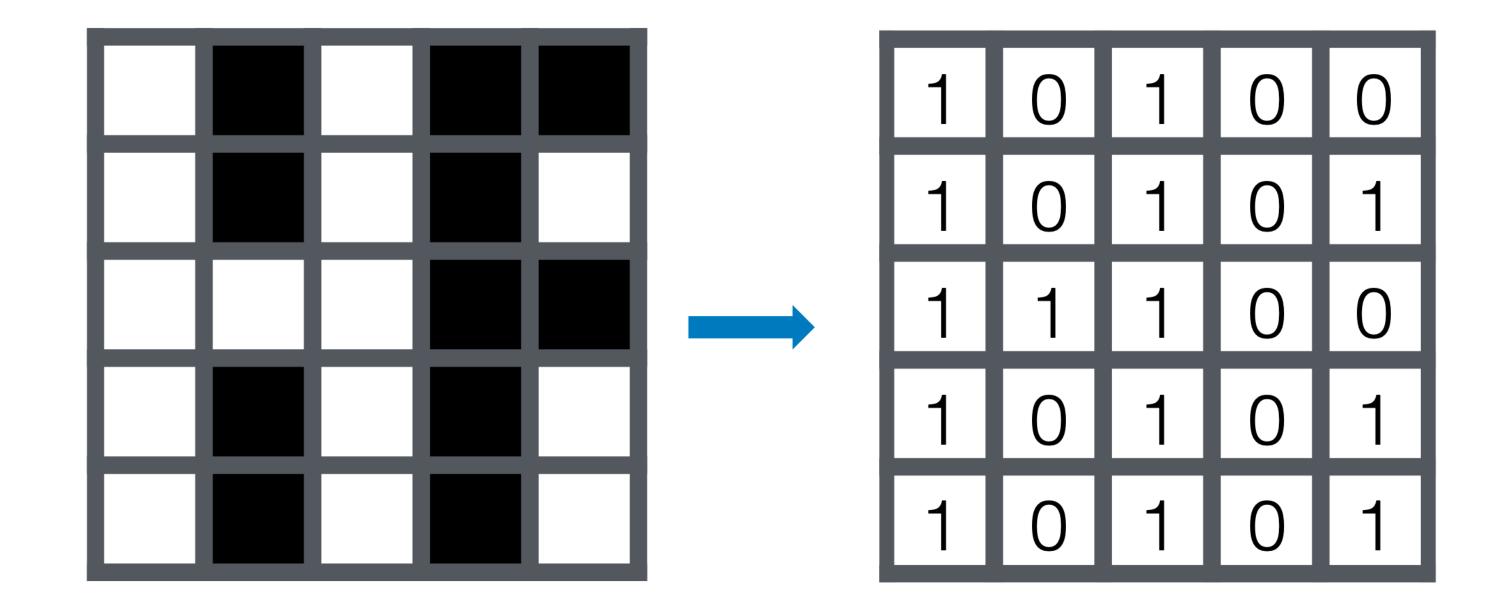
Failure modes of fully-connected neural networks

Convolutions

Pooling

CNNs across modalities

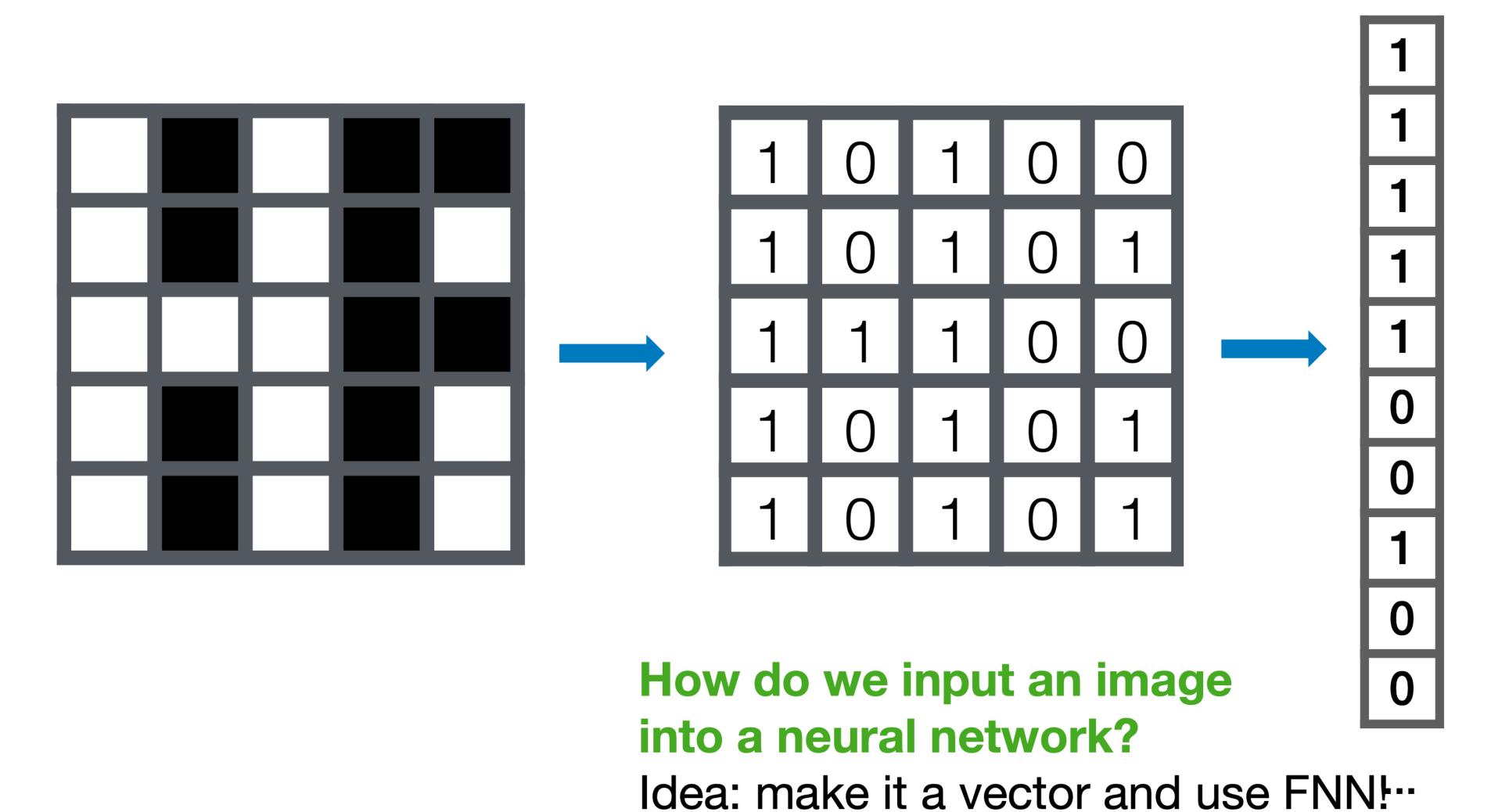
Images are tensors



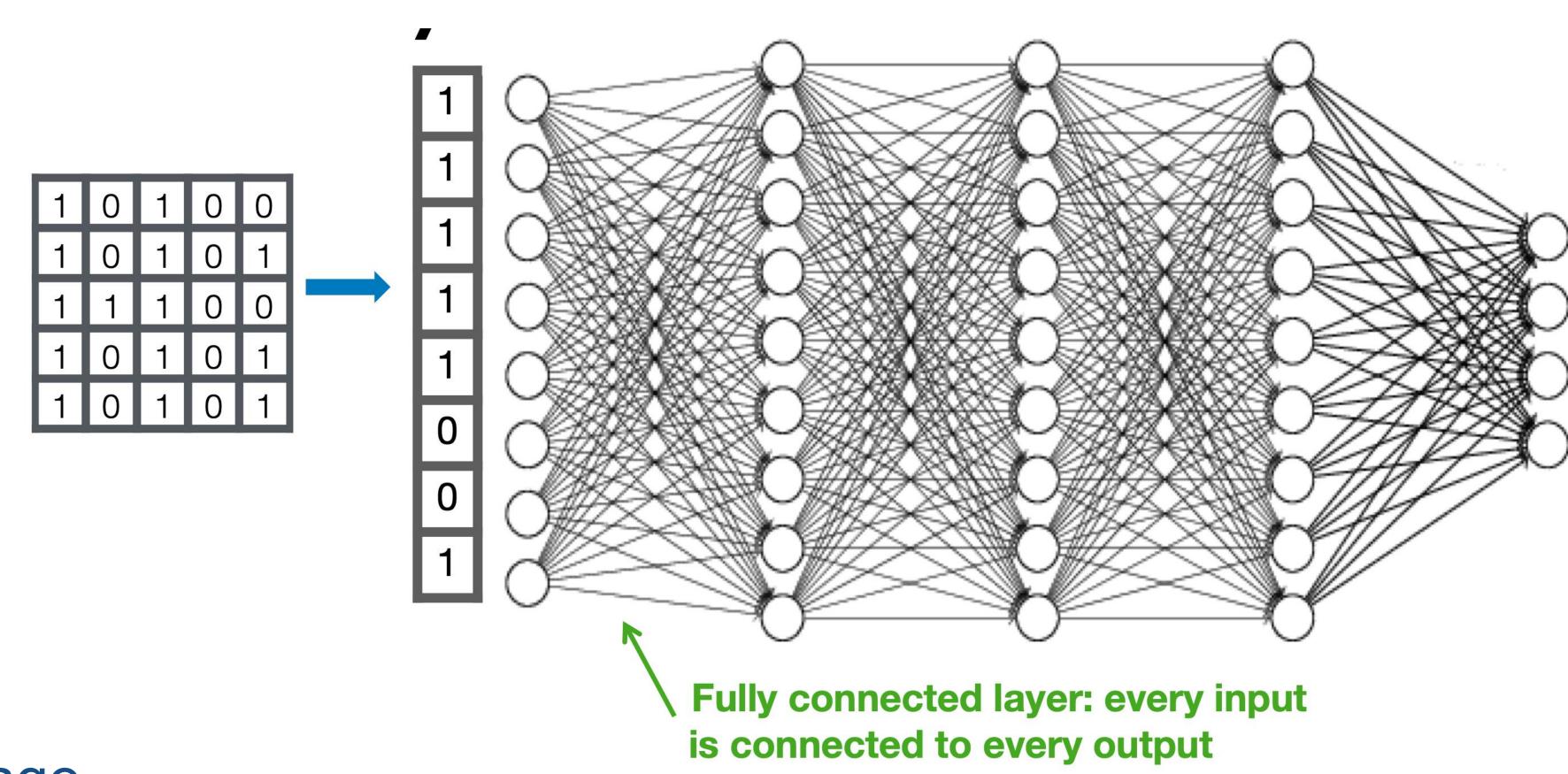
How do we input an image into a neural network?

•••

Images in our class so far..



Using FNNs on tiny images



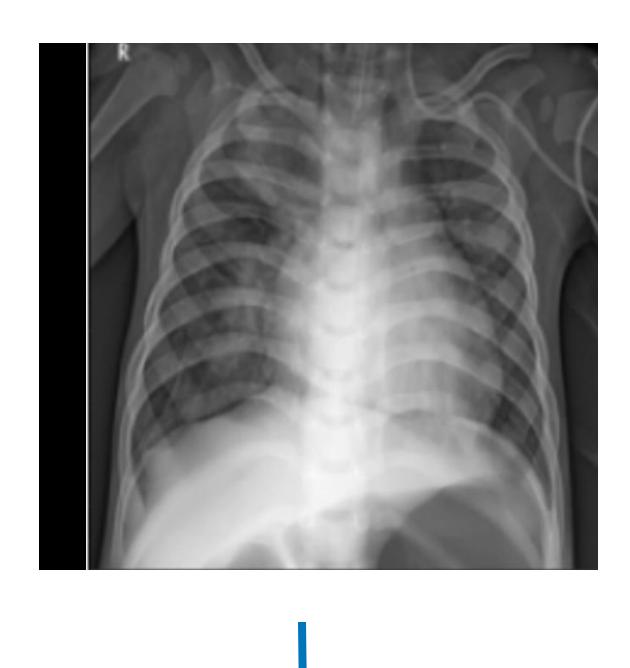
Example:

512*512 image ~250K hidden units 62.5B parameters per layer <- Bigger than GPT3...

What's wrong with FNNs?



$$x^0 = [0,1,1,...,0]$$



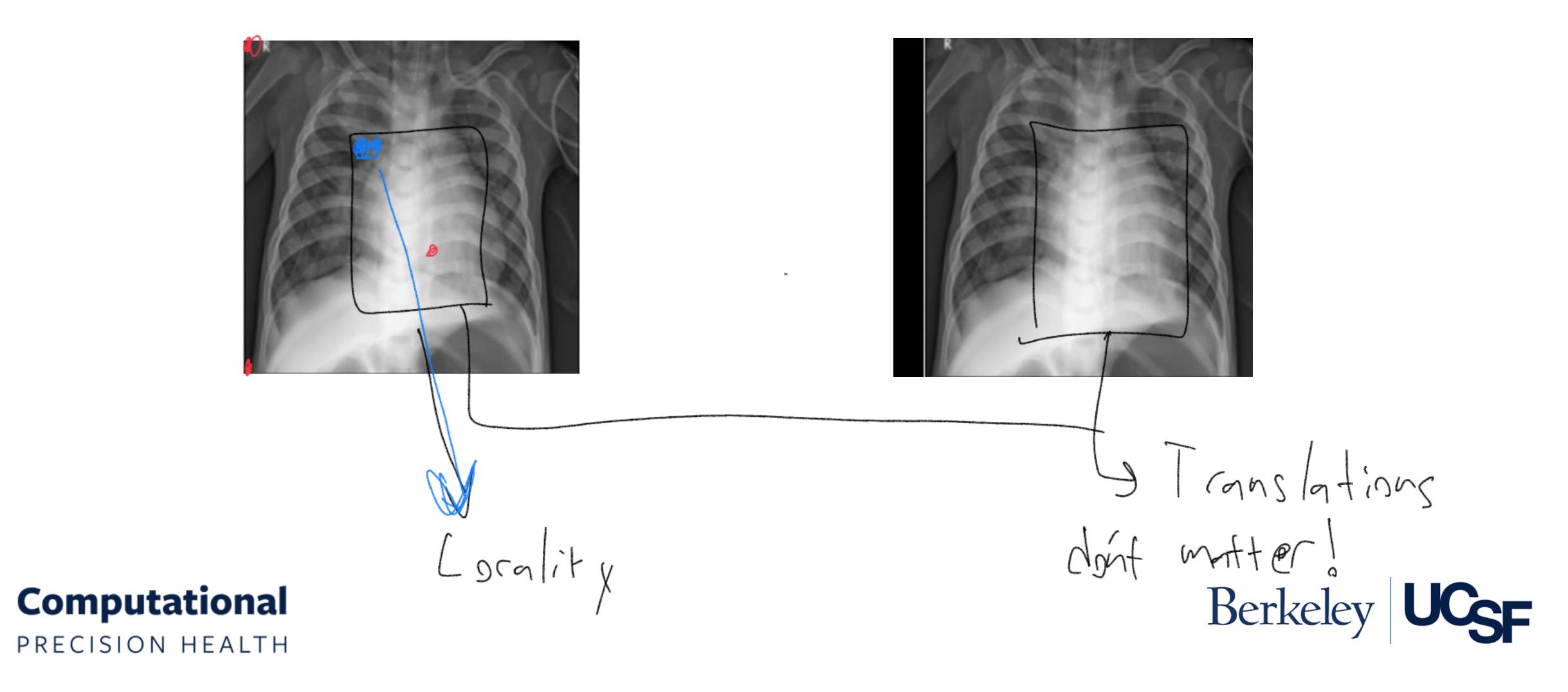
$$x^1 = [0,0,1,...,0]$$

Small padding, very different feature vectors!

Can it learn? Will it be easy?

Conceptual role of Hypothesis class: Choose your Mountain range

What do we know?



Desired properties for a good Hypothesis Class

Capture spatial dependencies: Pixel positions and locality matter!

Handle Translations / Nuissance variations: Objects of interest can appear anywhere

Scale: Allow efficient computation for large inputs

Images/ Volumes

Text

Graphs

Agenda

Recap

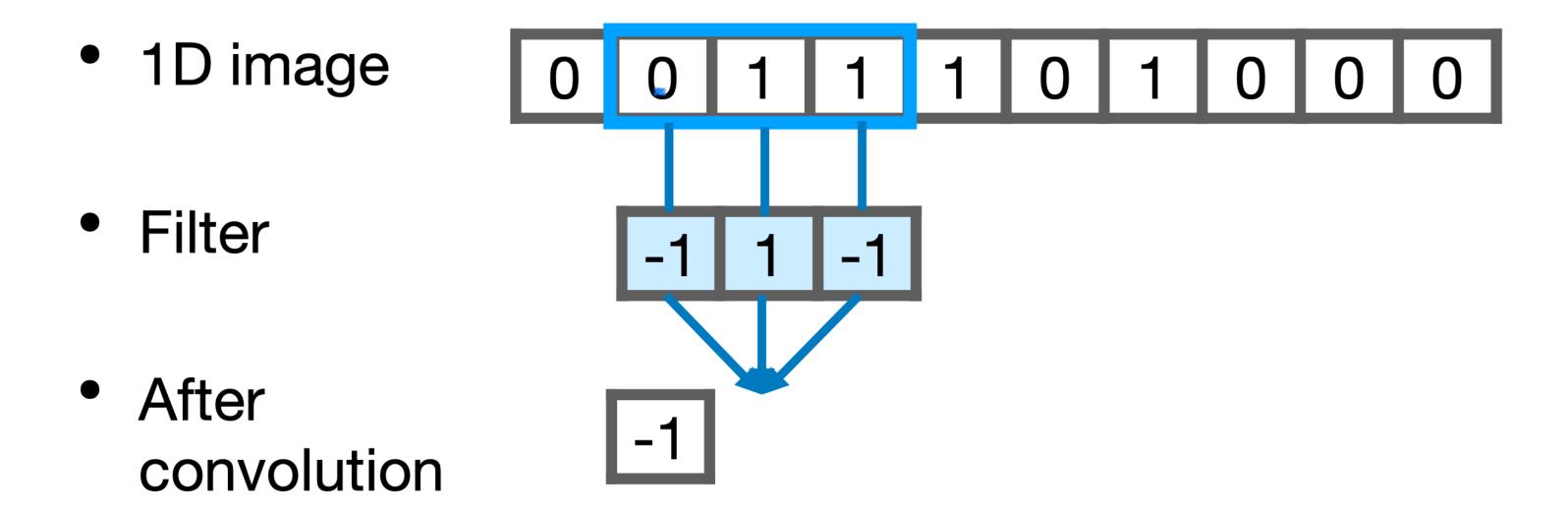
Failure modes of fully-connected neural networks

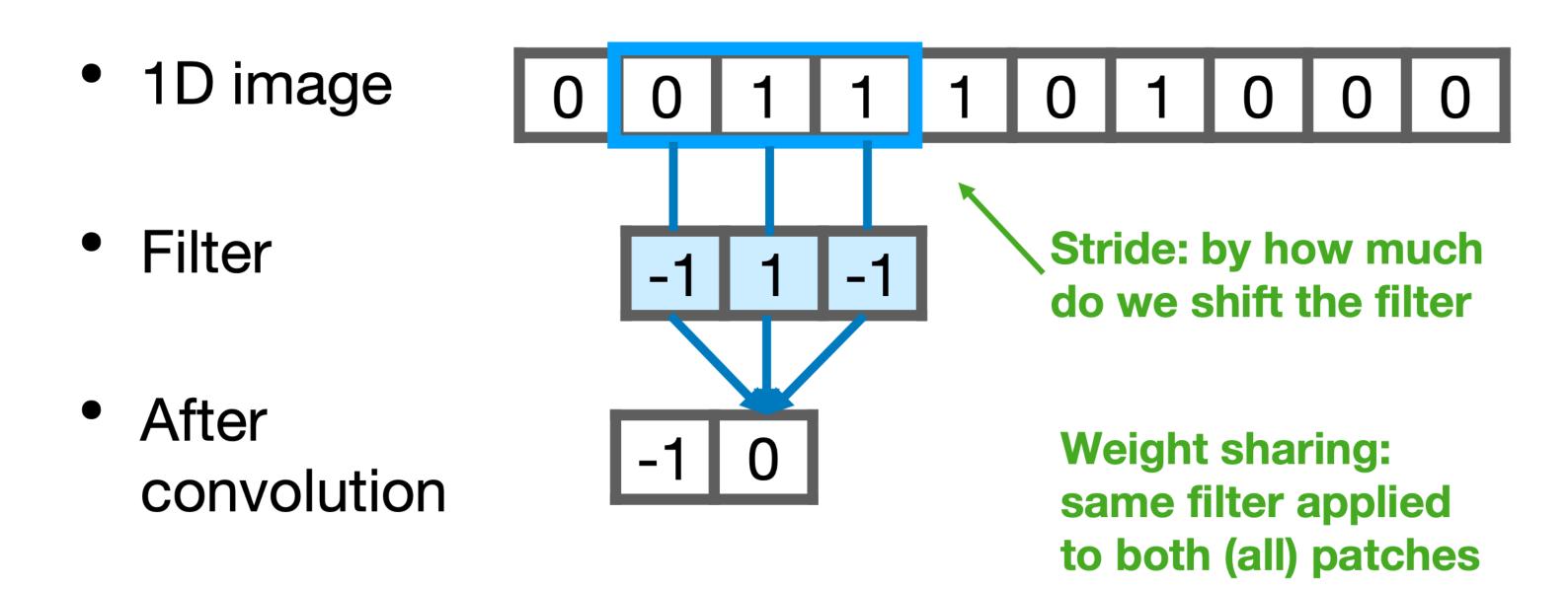
Convolutions: Capturing locality and positional-equivariance

Pooling

CNNs across modalities

Convolution: Definition







Big advantage: due to weight sharing, needs much fewer weights than a fully connected network

Translation equivariance?

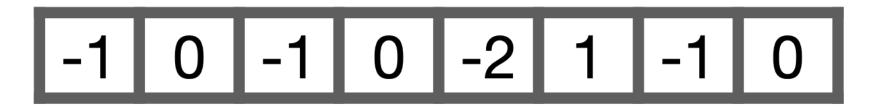
- Filter __1 __1 __1
- After convolution
 -1 0 -1 0 -2 1 -1 0
- After ReLu

Padding

• 1D image

Filter

After convolution



After ReLu

Output is smaller! (why?)

Remedy: pad input with zeros

Padding

• 1D image

Filter

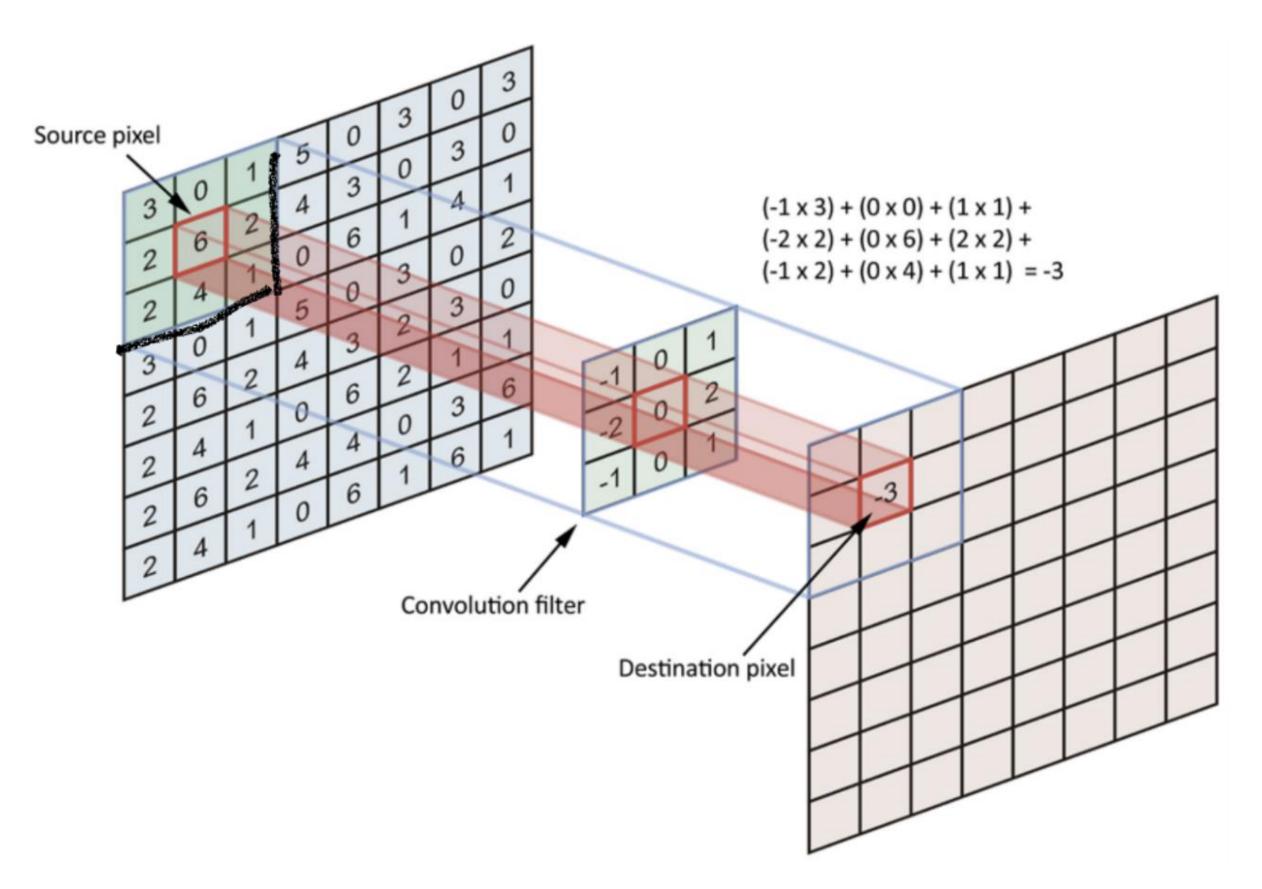
After convolution

After ReLu

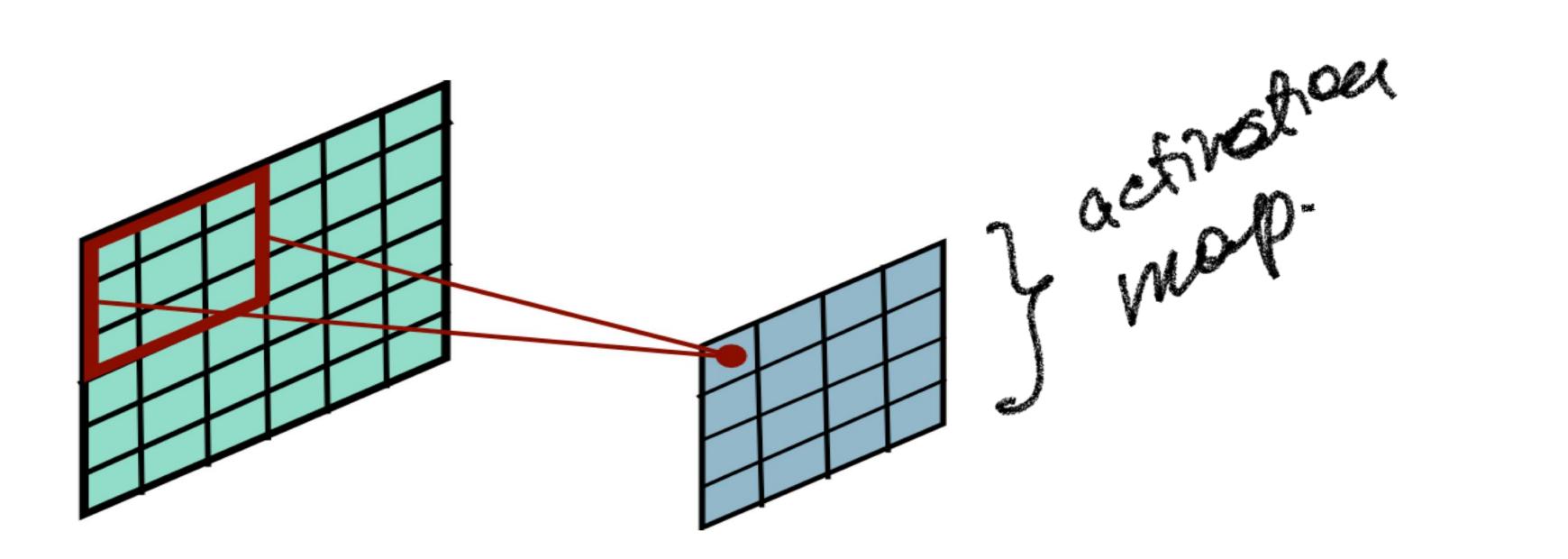
Output is smaller! (why?)

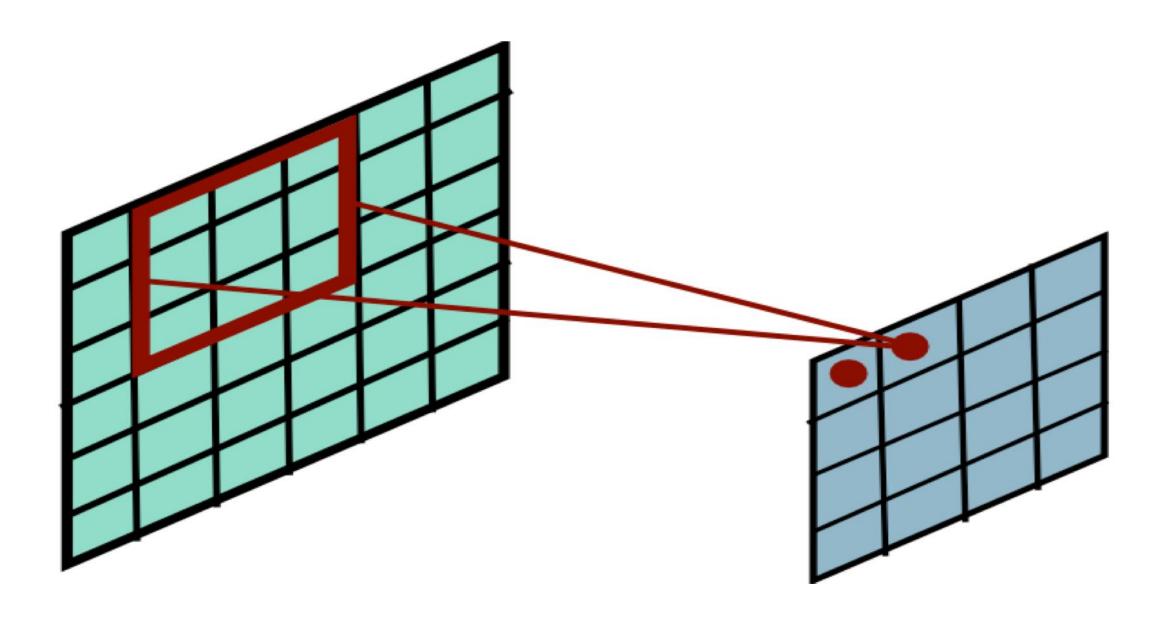
Remedy: pad input with zeros

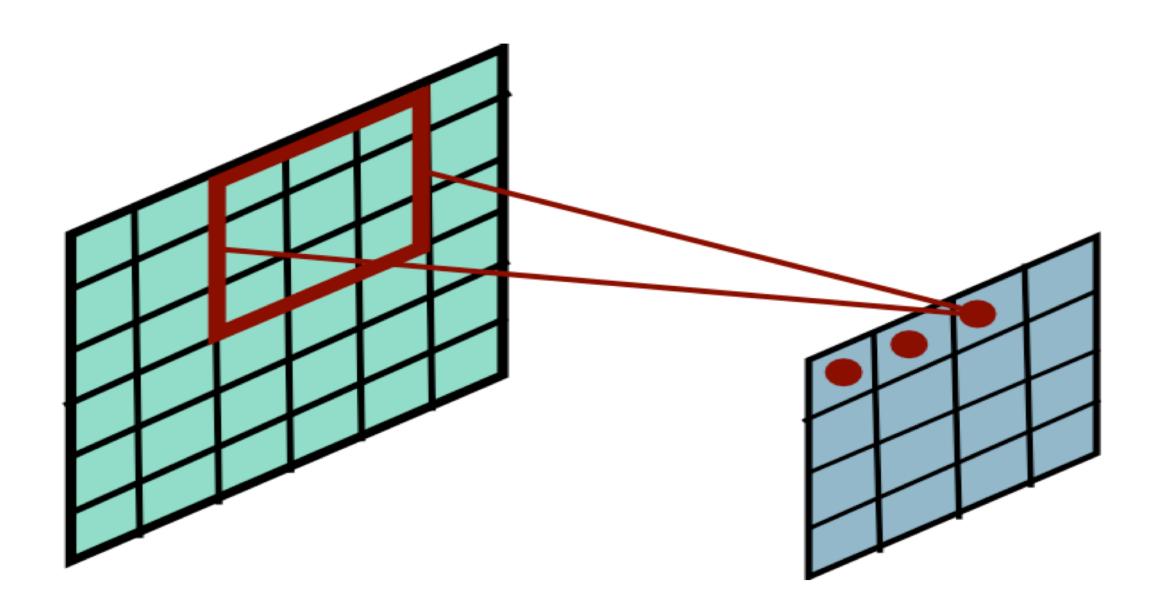
2D Convolutions

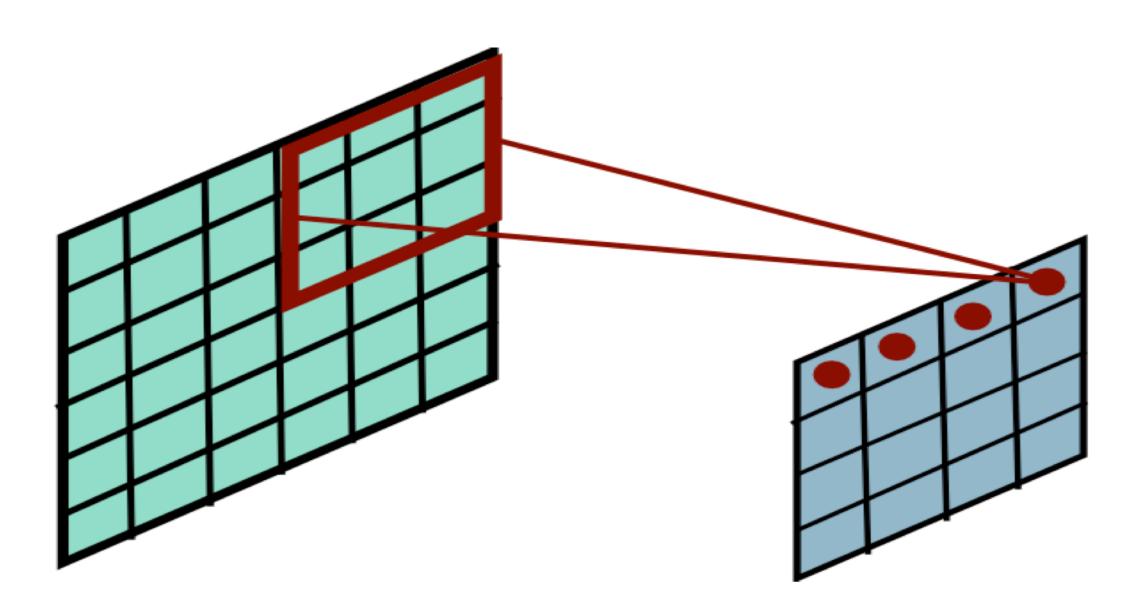


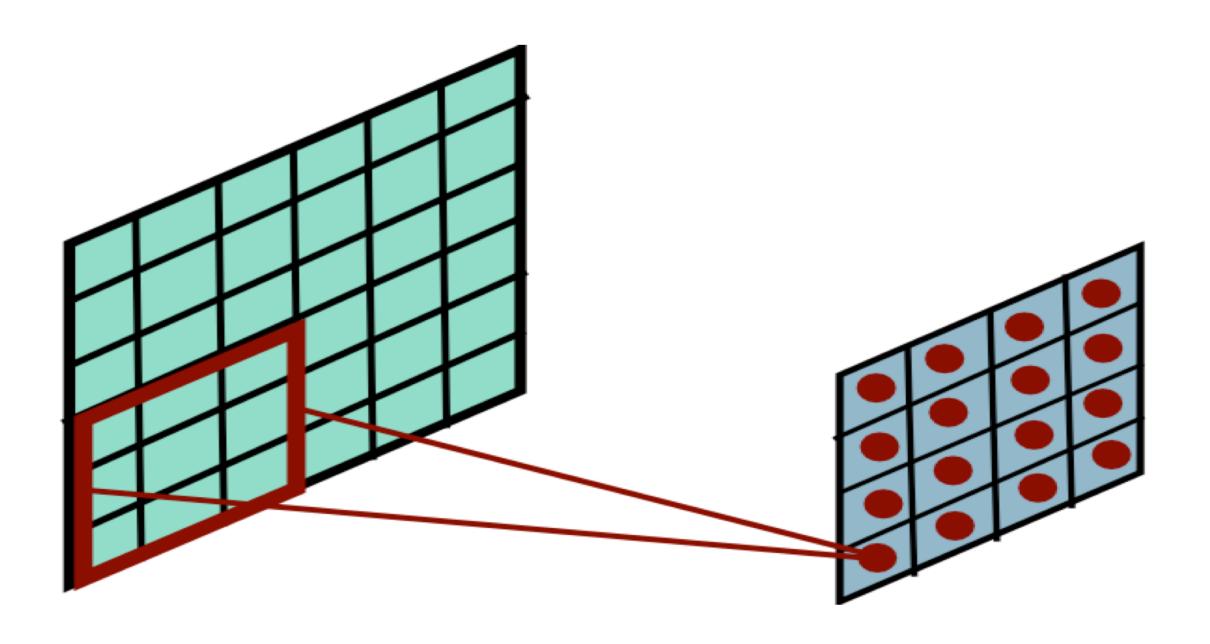
The convolution operation.



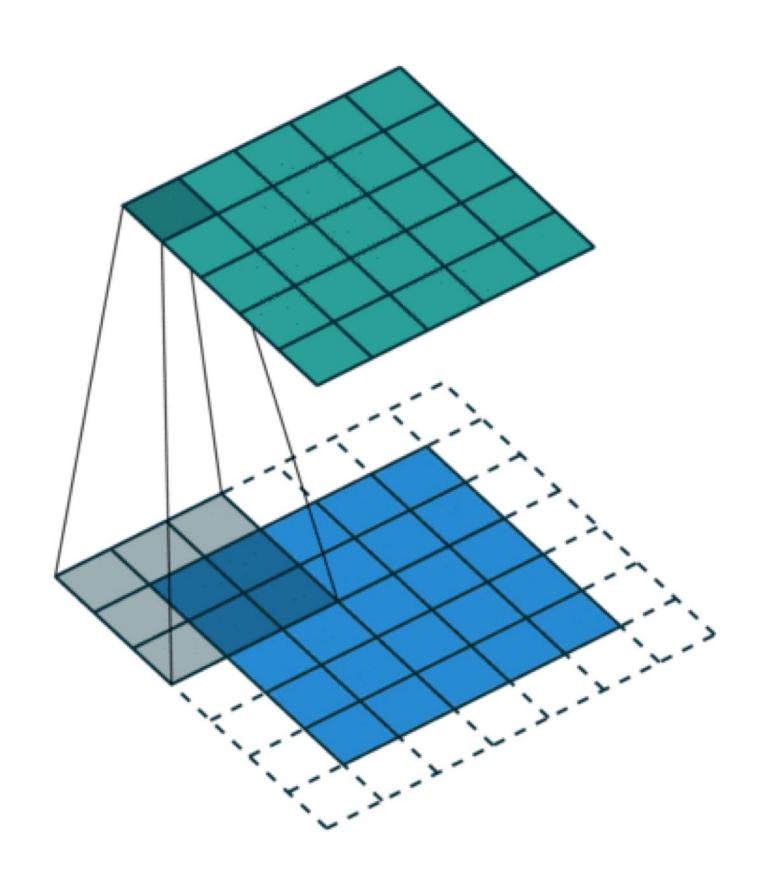




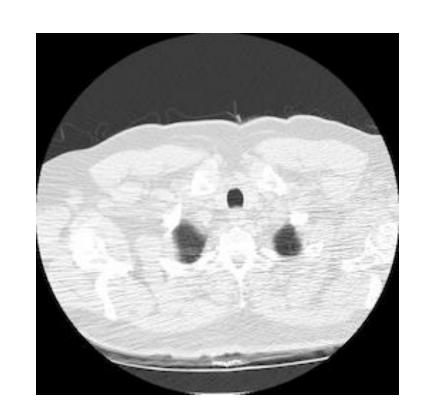


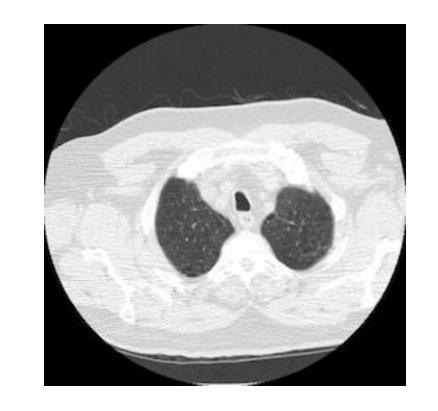


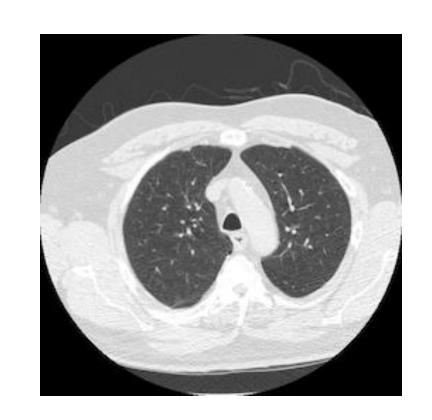
Convolution with Padding



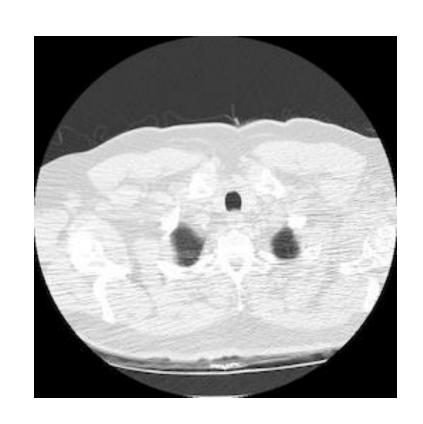
Question: How would you apply this idea to a CT-scan?

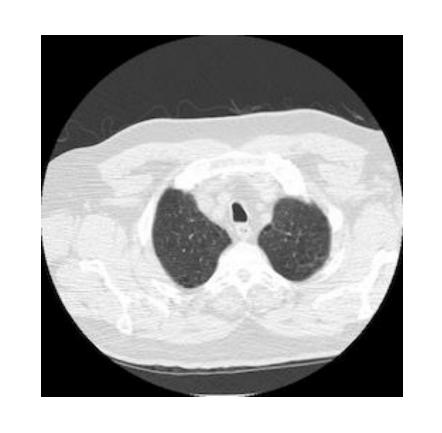






Question: How would you apply this idea to a CT-scan?





3D Convolutions

Examples of Convolutions

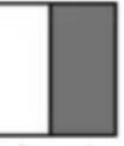
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

L'I Low

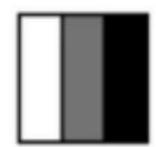
1	0	-1	
1	0	-1	
1	0	-1	

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

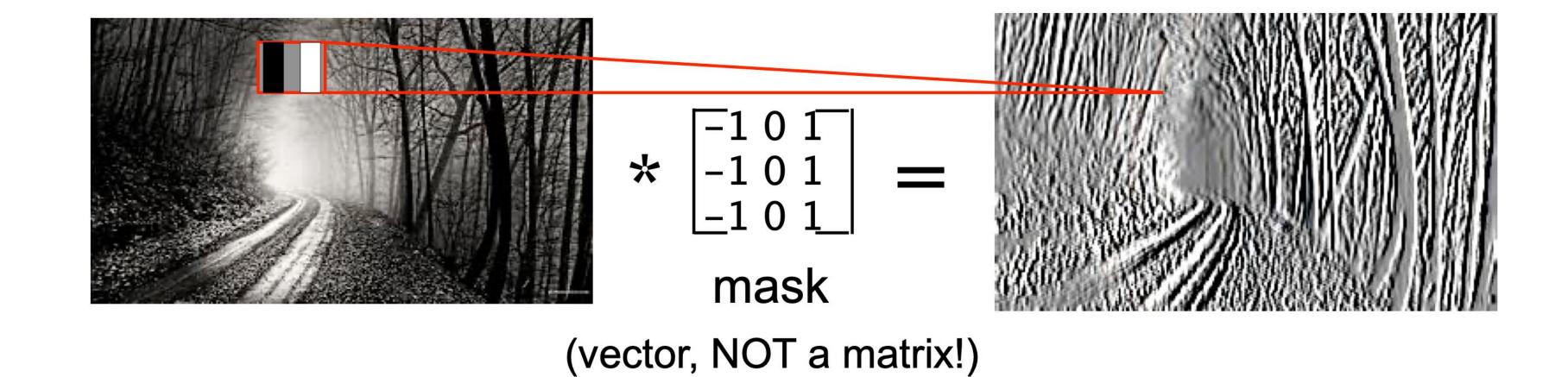
ingut



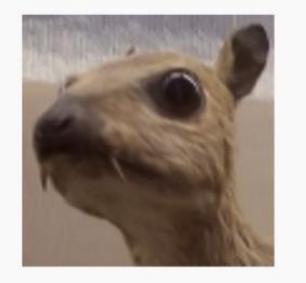
*



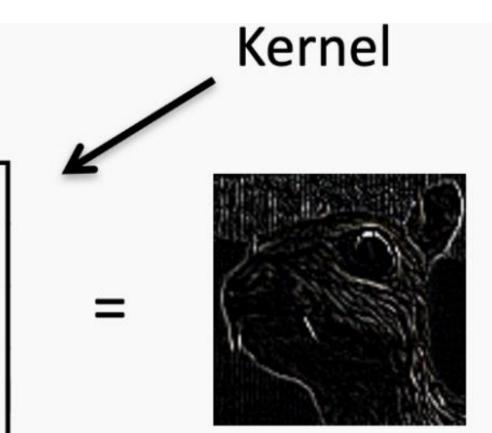
Examples of Convolutions



Examples of Convolutions



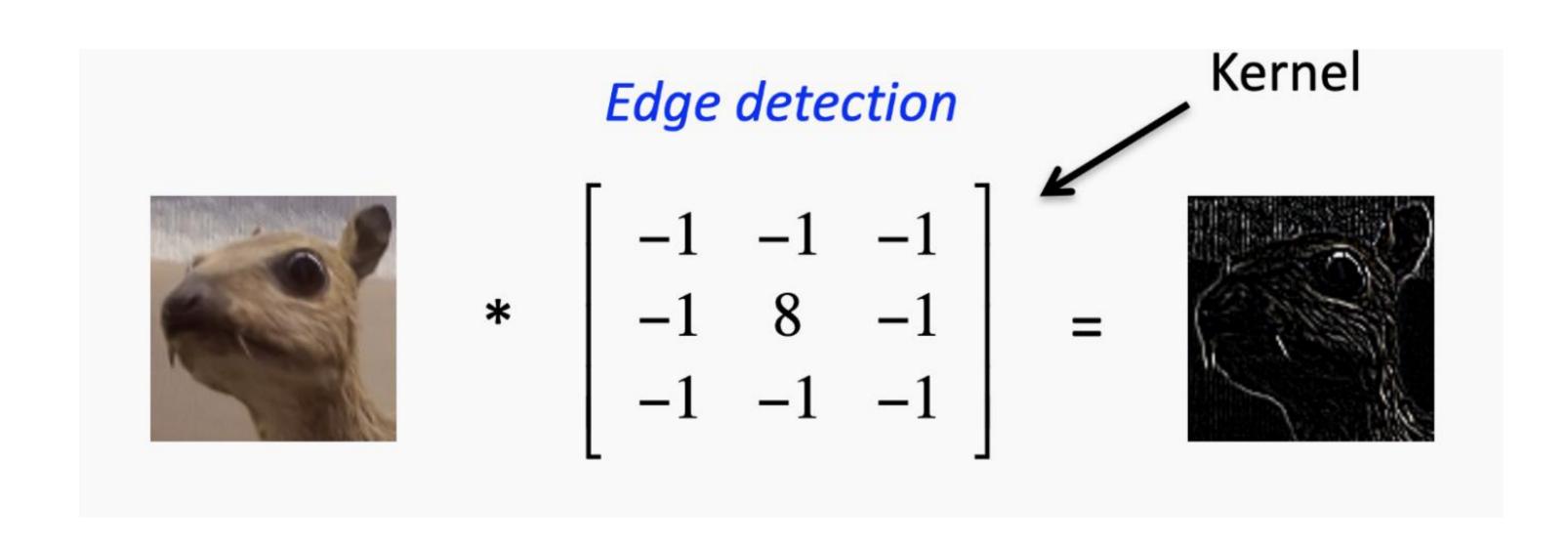
 $\begin{vmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{vmatrix} =$



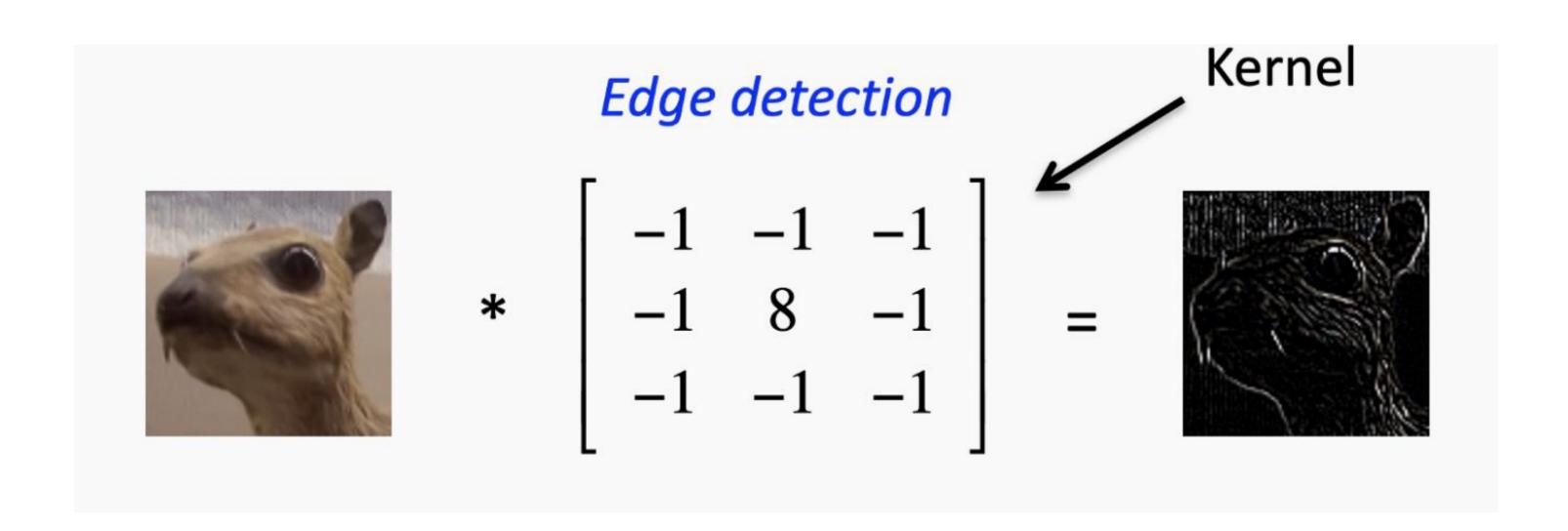
Sharpen

 $\begin{array}{c|ccccc}
 & 0 & -1 & 0 \\
 & -1 & 5 & -1 \\
 & 0 & -1 & 0 \\
\end{array}$

Question: How can we make convolutions more expressive?



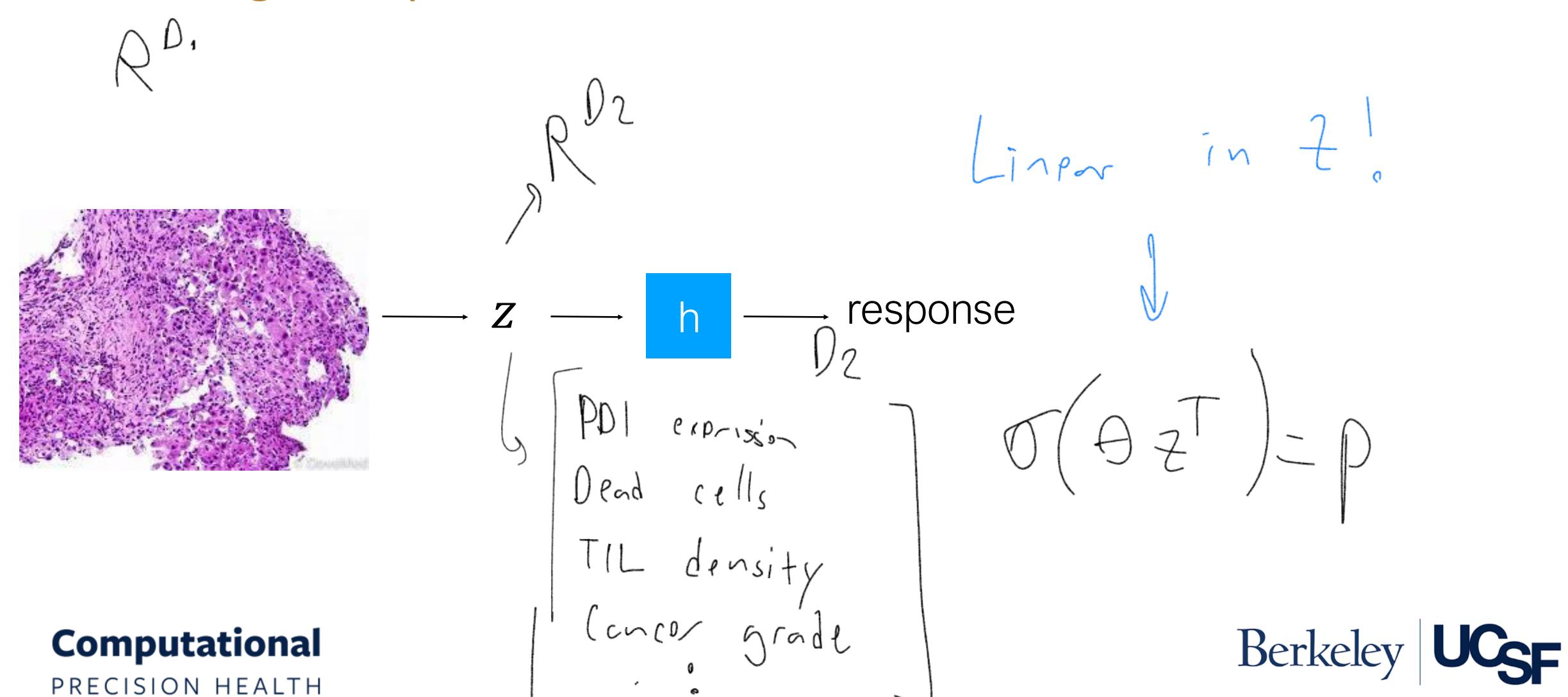
Question: How can we make convolutions more expressive?



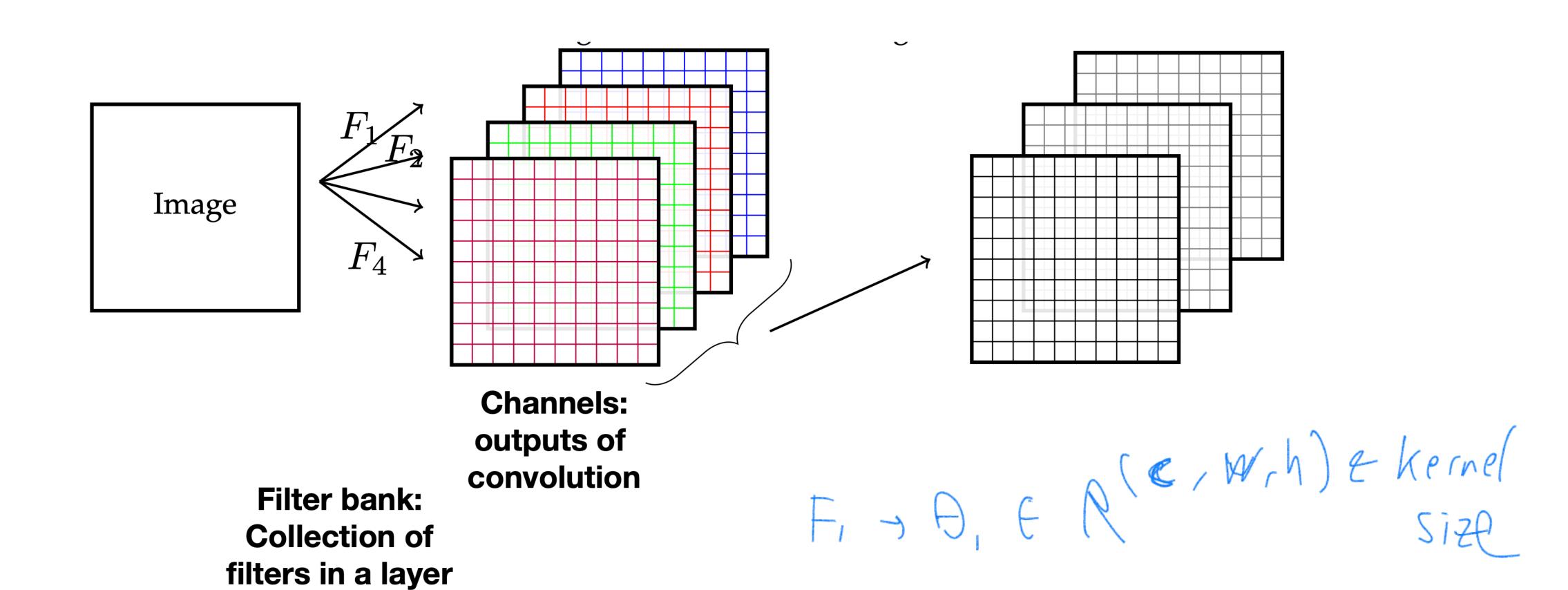
Width: Many kernels in parallel

Depth: Composing kernels

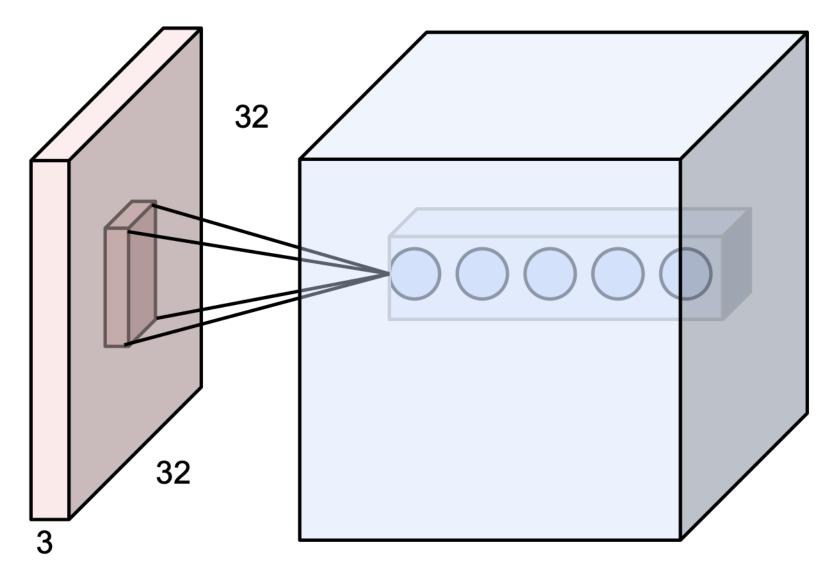
Motivating example: linear in a different basis



Multiple channels/filters



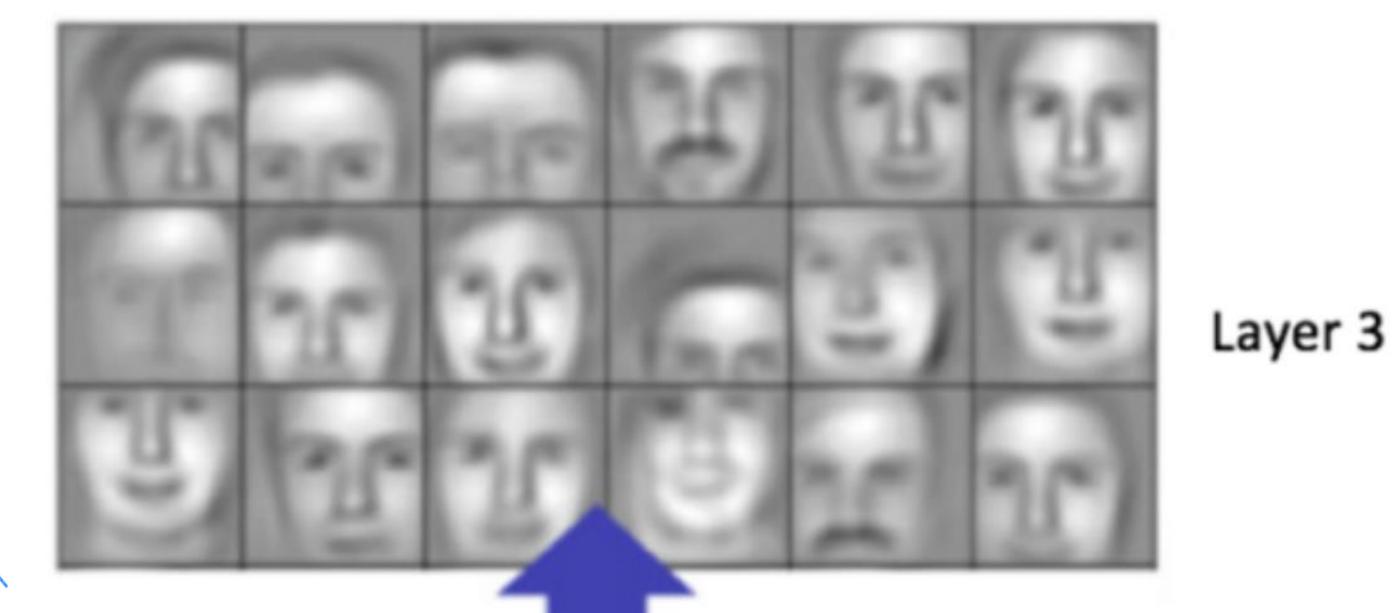
Naming Conventions

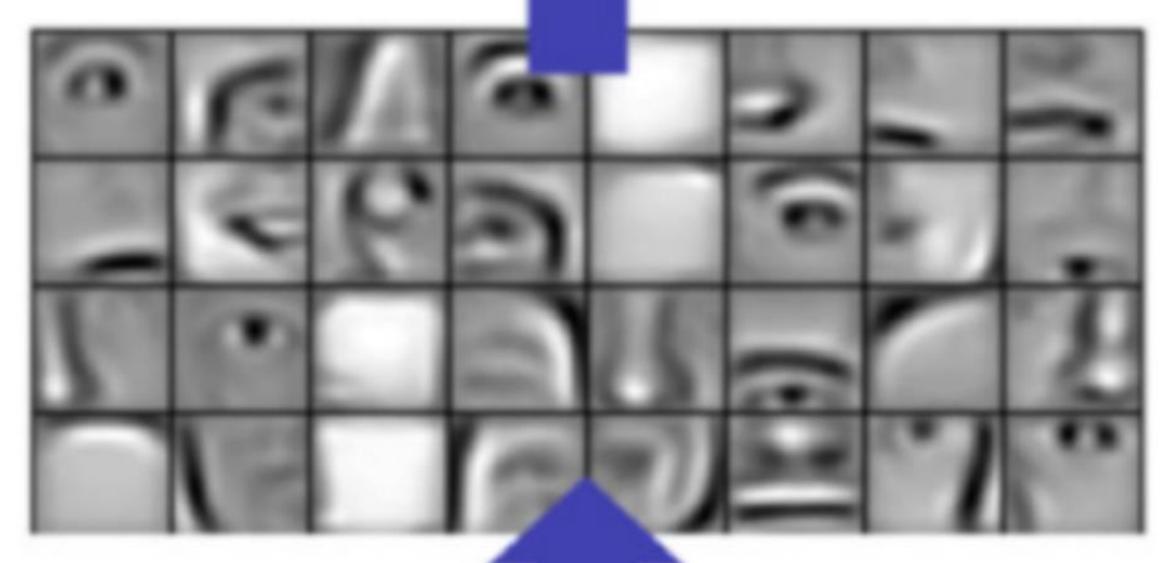


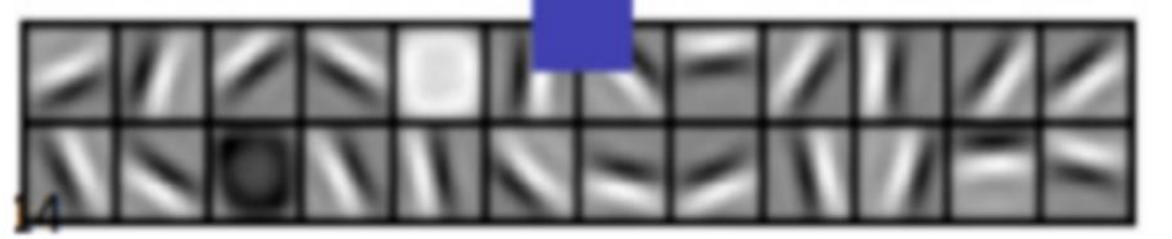
Hidden layer of "depth" 5: five neurons all looking at the same patch; five different masks.

Apply the same 5 masks to each patch. Five neurons per patch.

Examples Composition in the wild1



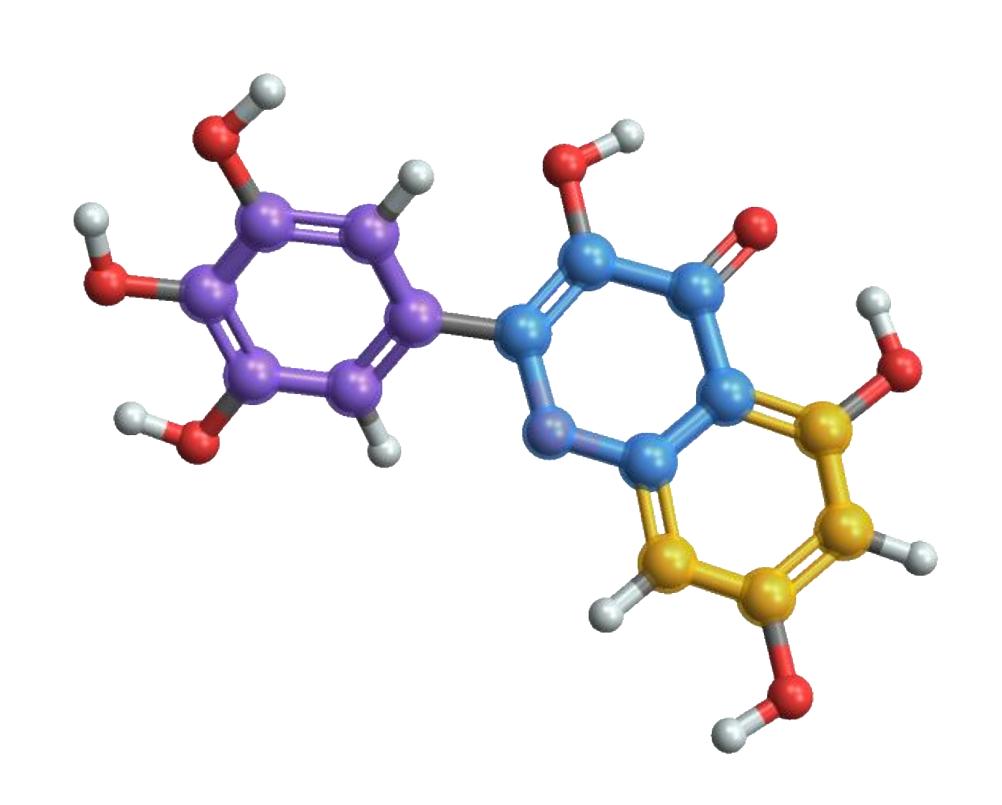




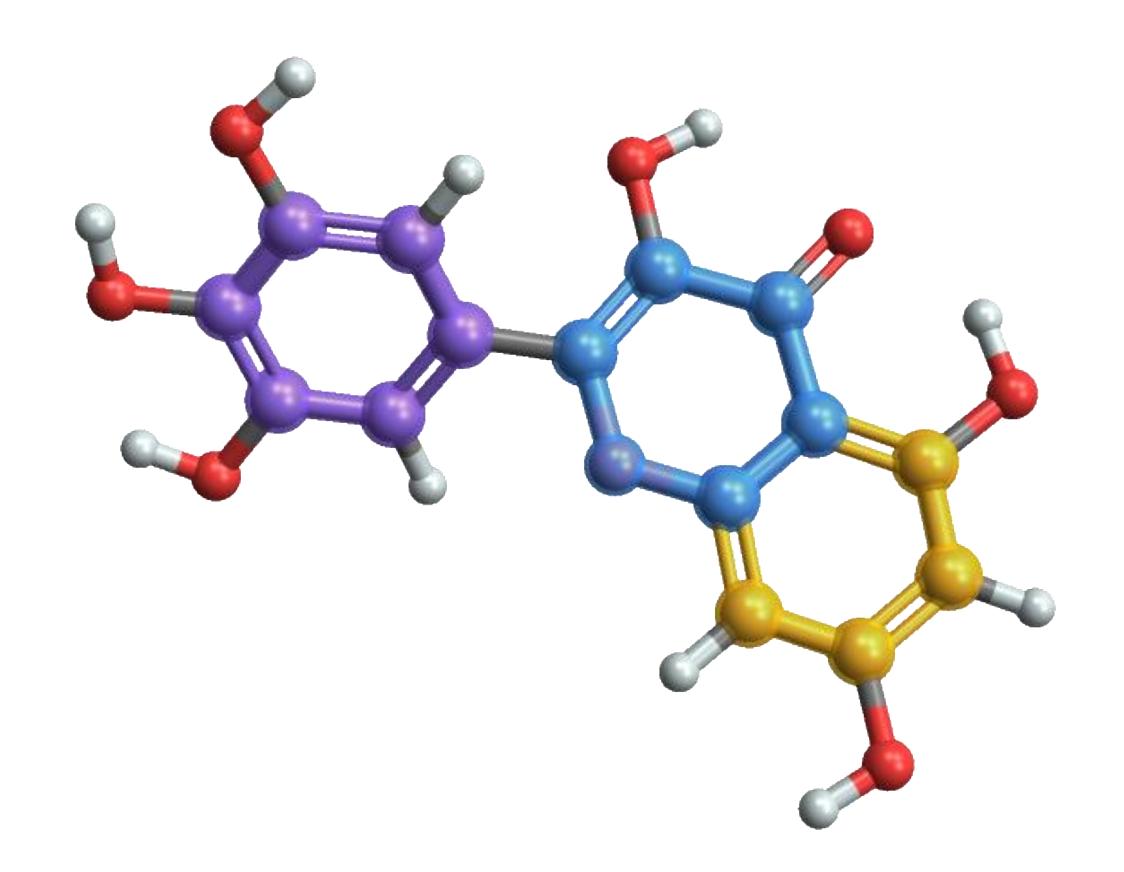
Layer 1

Layer 2

Question: How would you apply this idea to a graph?

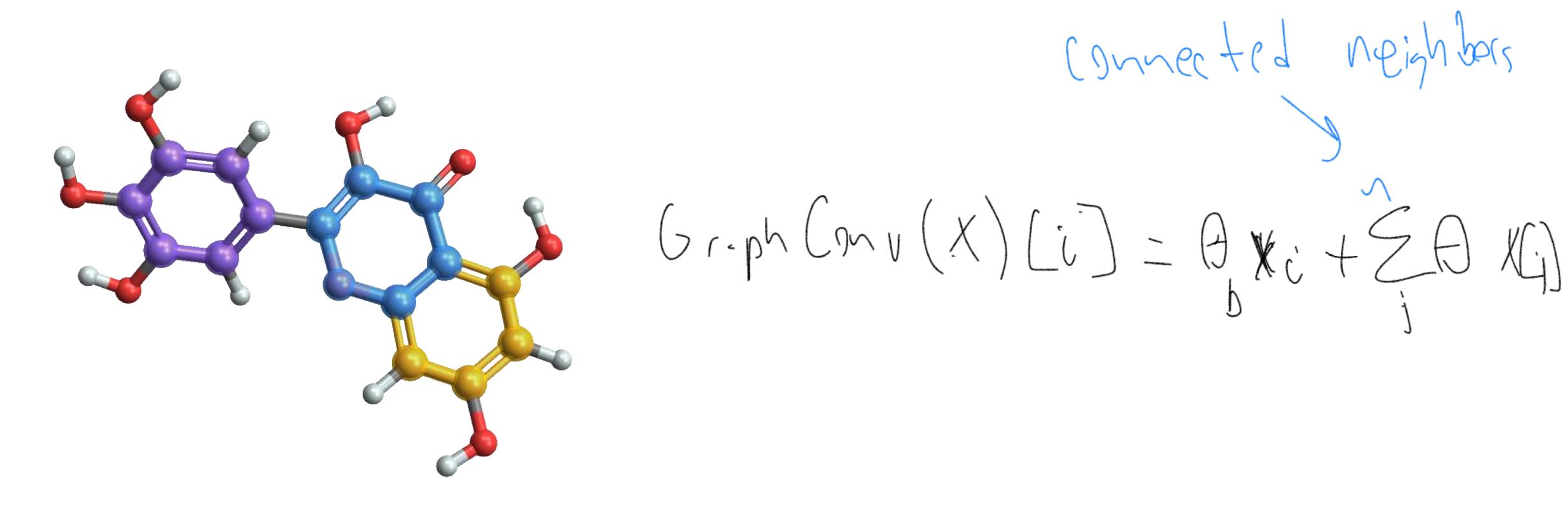


Question: How would you apply this idea to a graph?



Graph Convolutions: Leverage neighboring nodes

Question: How would you apply this idea to a graph?



Graph Convolutions: Leverage neighboring nodes

Agenda

Recap

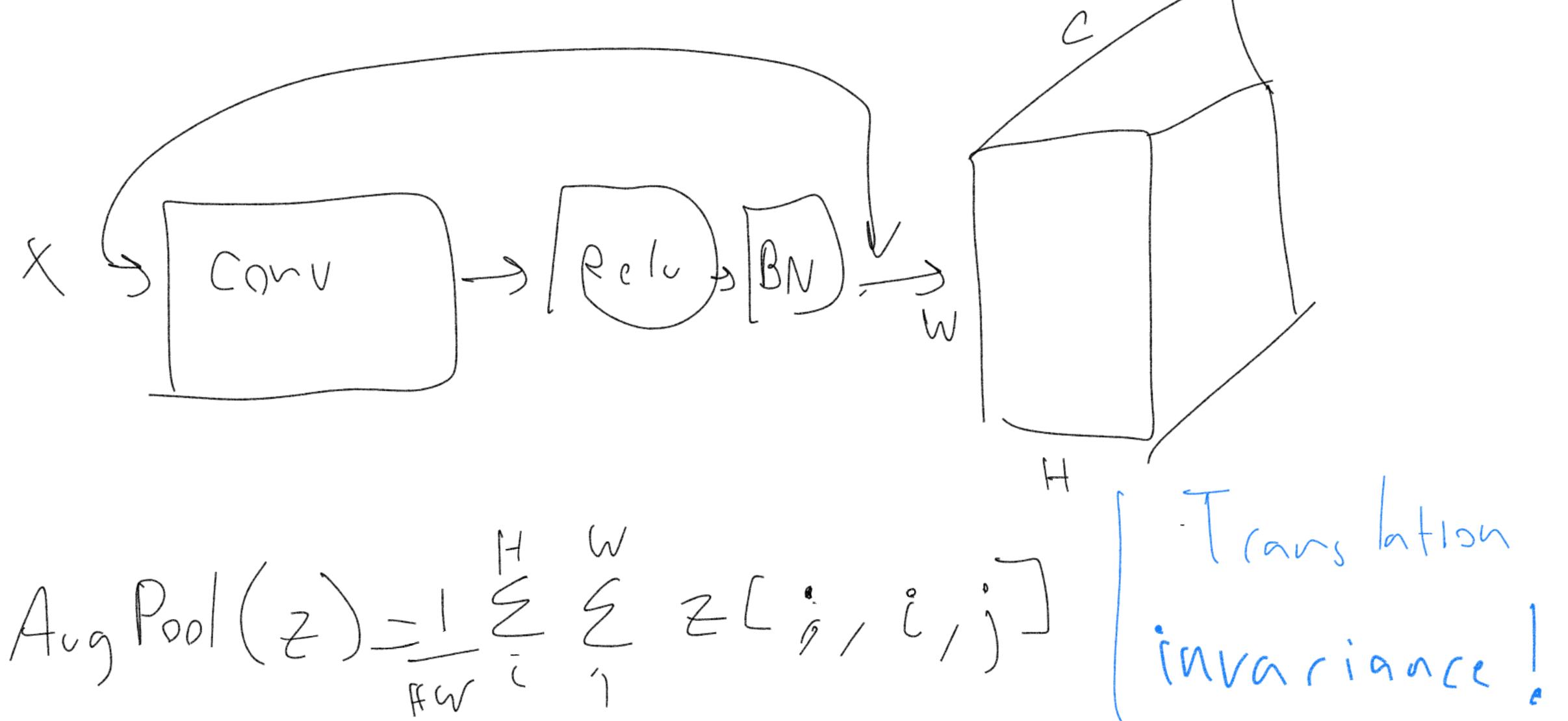
Failure modes of fully-connected neural networks

Convolutions

Pooling: Aggregating features and location invariance

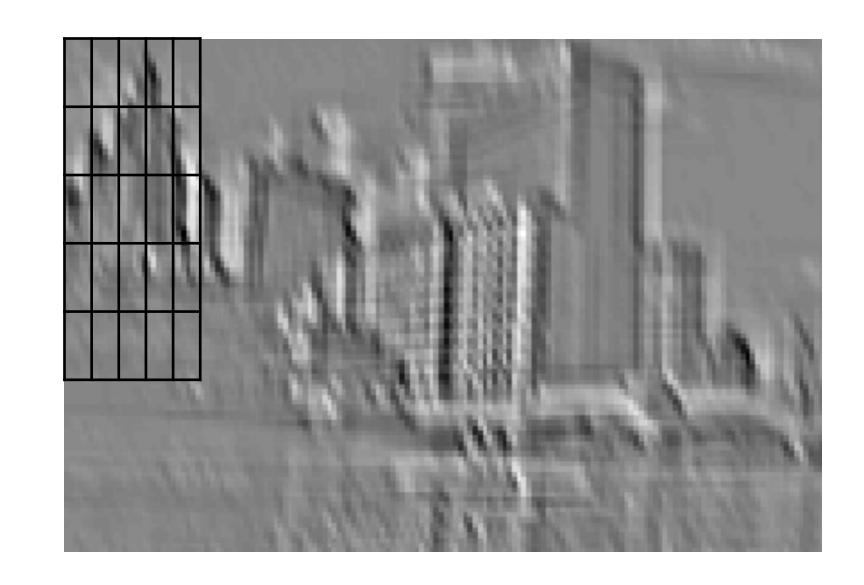
CNNs across modalities

Average Pooling

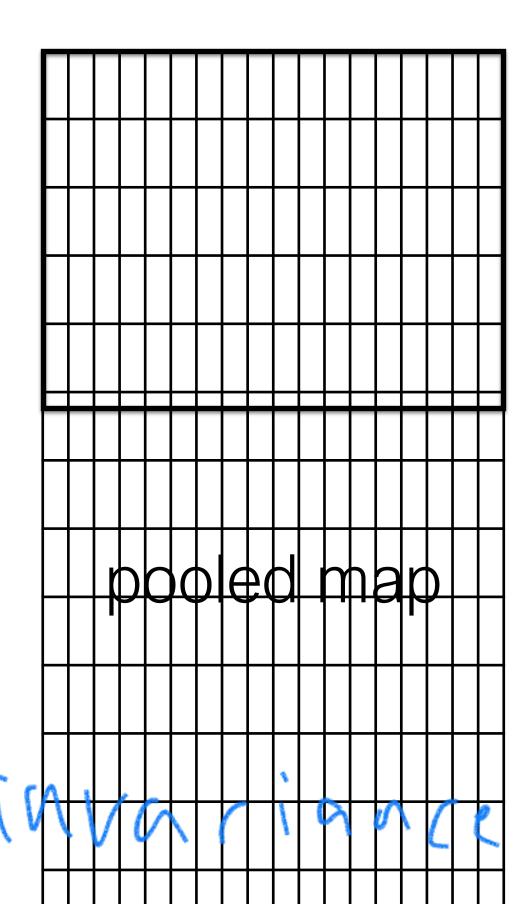


Pooling

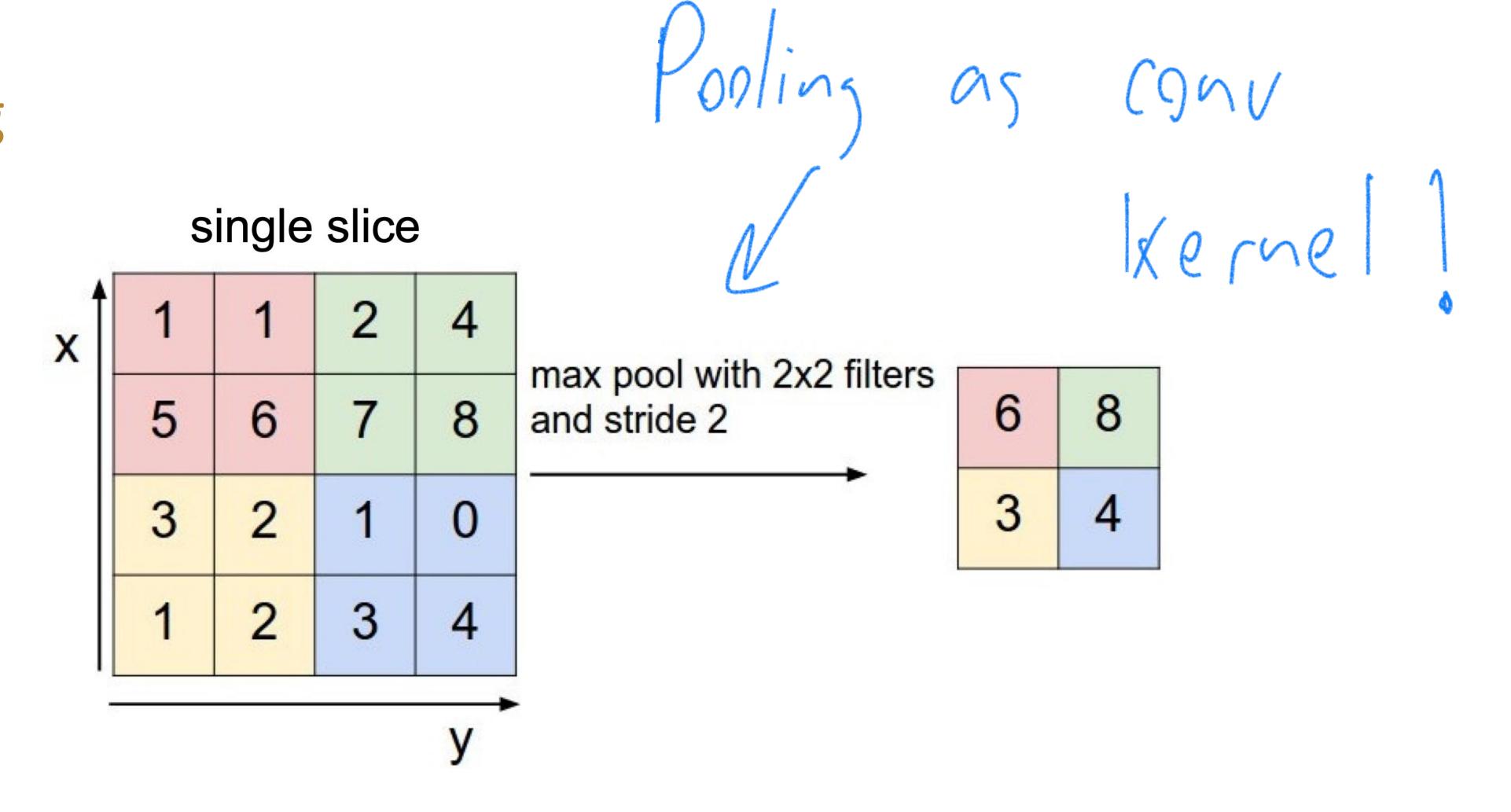
 We wish to know whether a feature was there but not exactly where it was



feature map



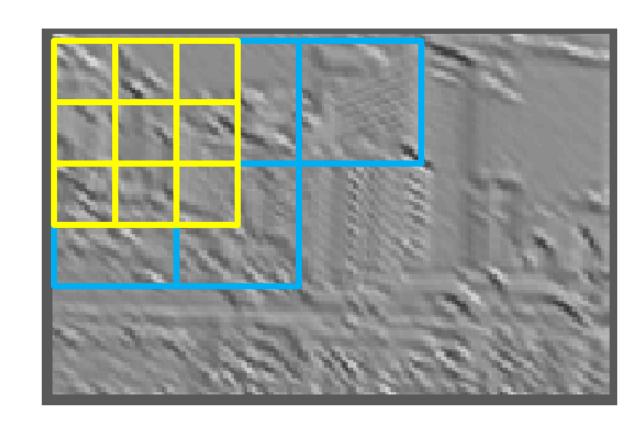
Max Pooling



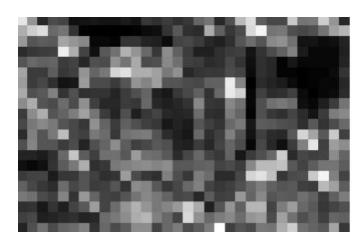
 Similar to filtering, but output the maximum entry instead of a weighted sum

Pooling (max)

- Pooling region and "stride" may vary
 - pooling induces translation invariance at the cost of spatial resolution
 - stride reduces the size of the resulting feature map

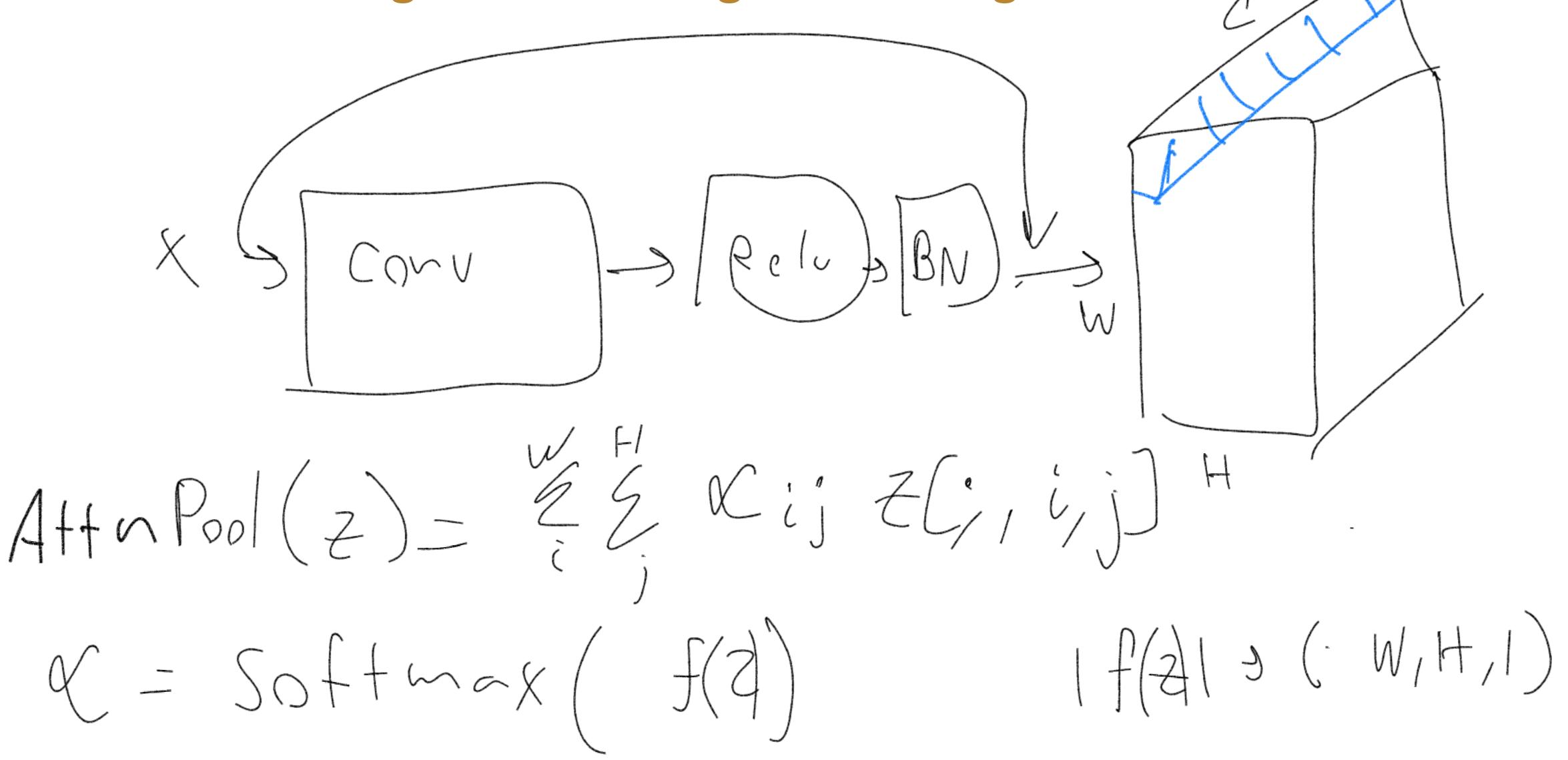


feature map

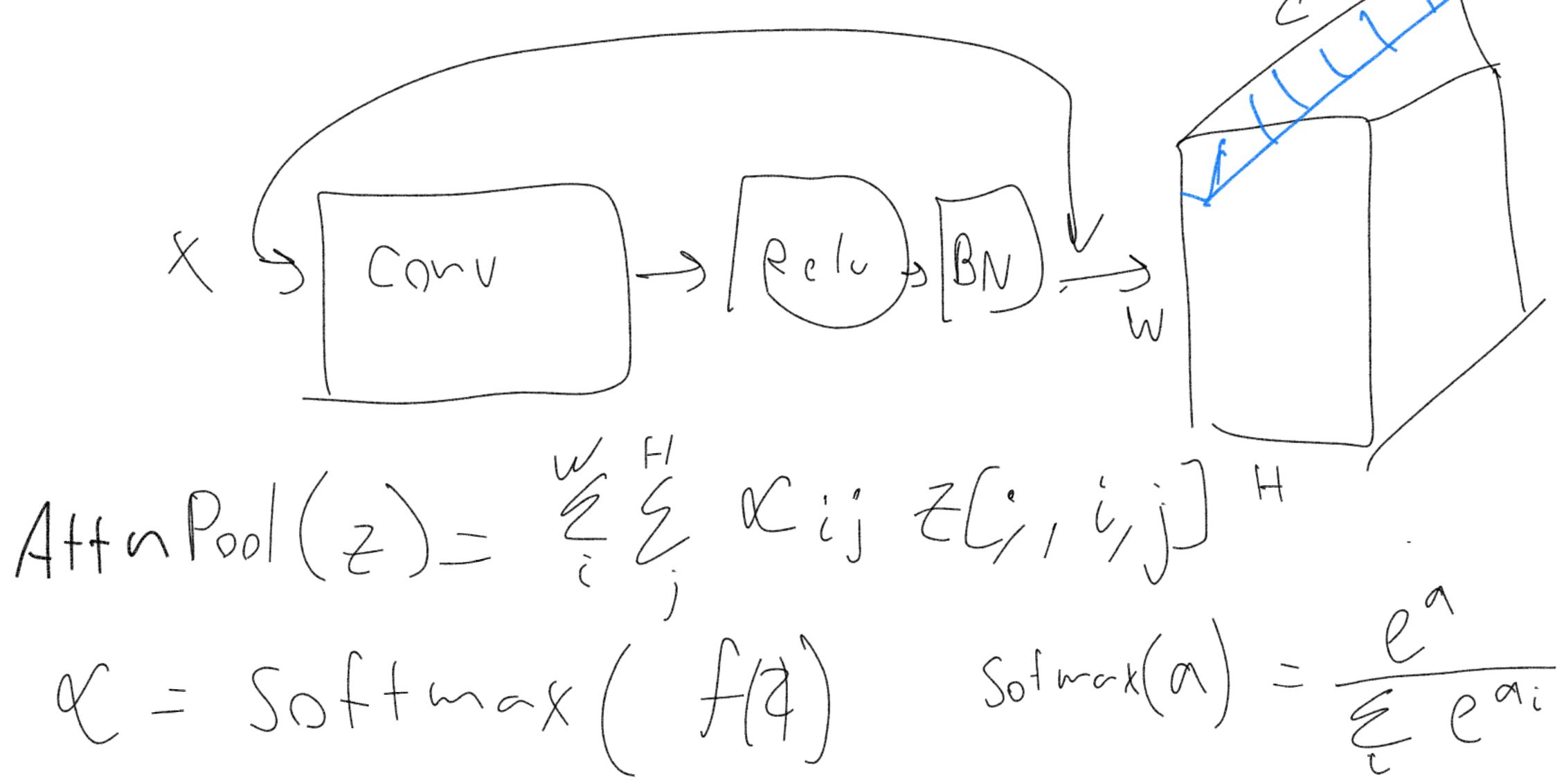


feature map after max pooling

Attention Pooling: learned weighted average



Attention Pooling: learned weighted average



Multi-Head Attention Pooling: more shots on goal

Focus on diffirmt flyings

Agenda

Recap

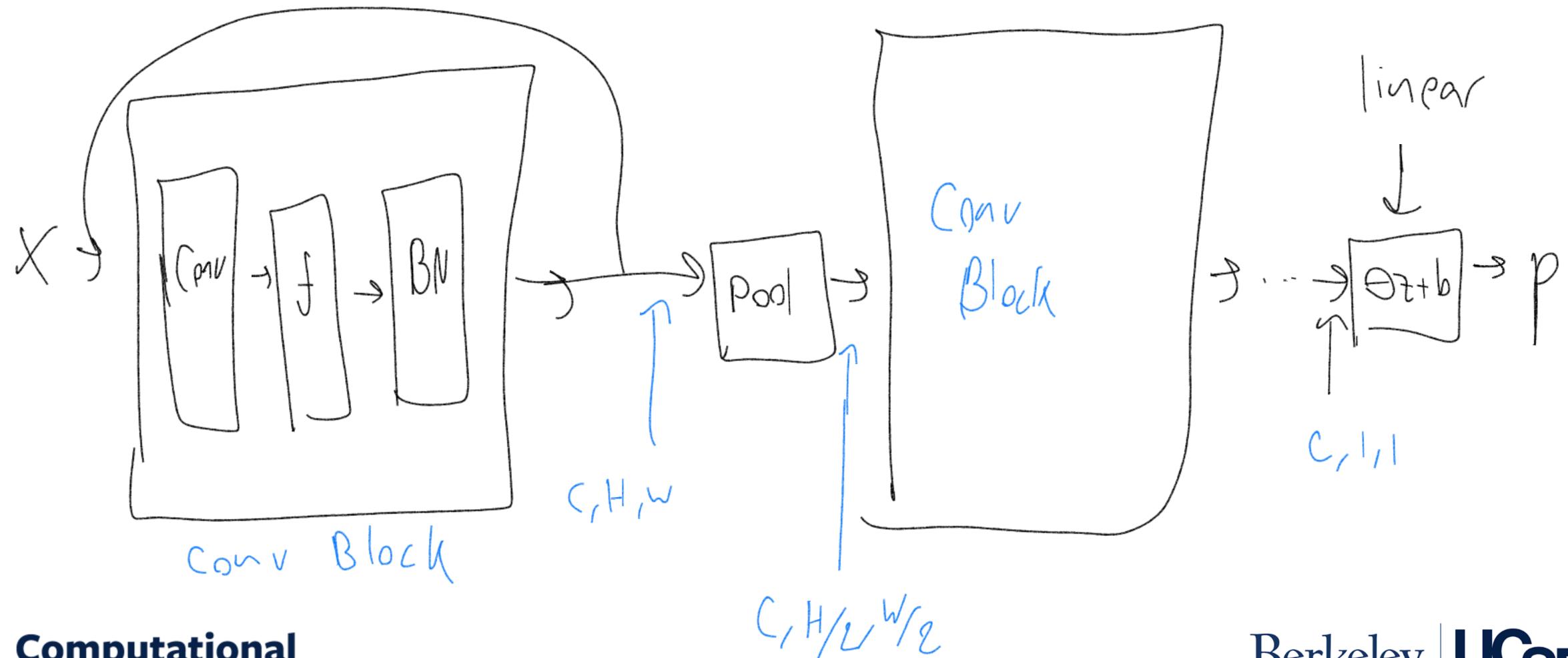
Failure modes of fully-connected neural networks

Convolutions

Pooling

CNNs across modalities

Putting it together: CNNs



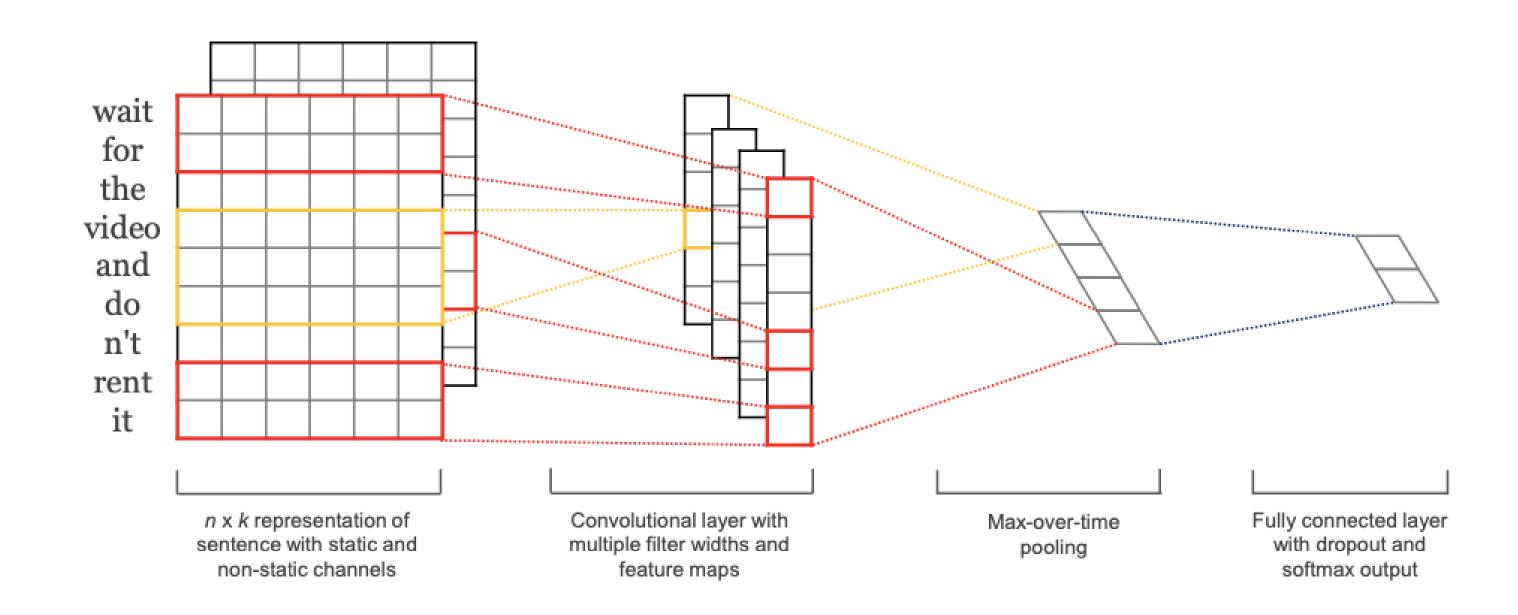
Computational

Berkeley UCSF

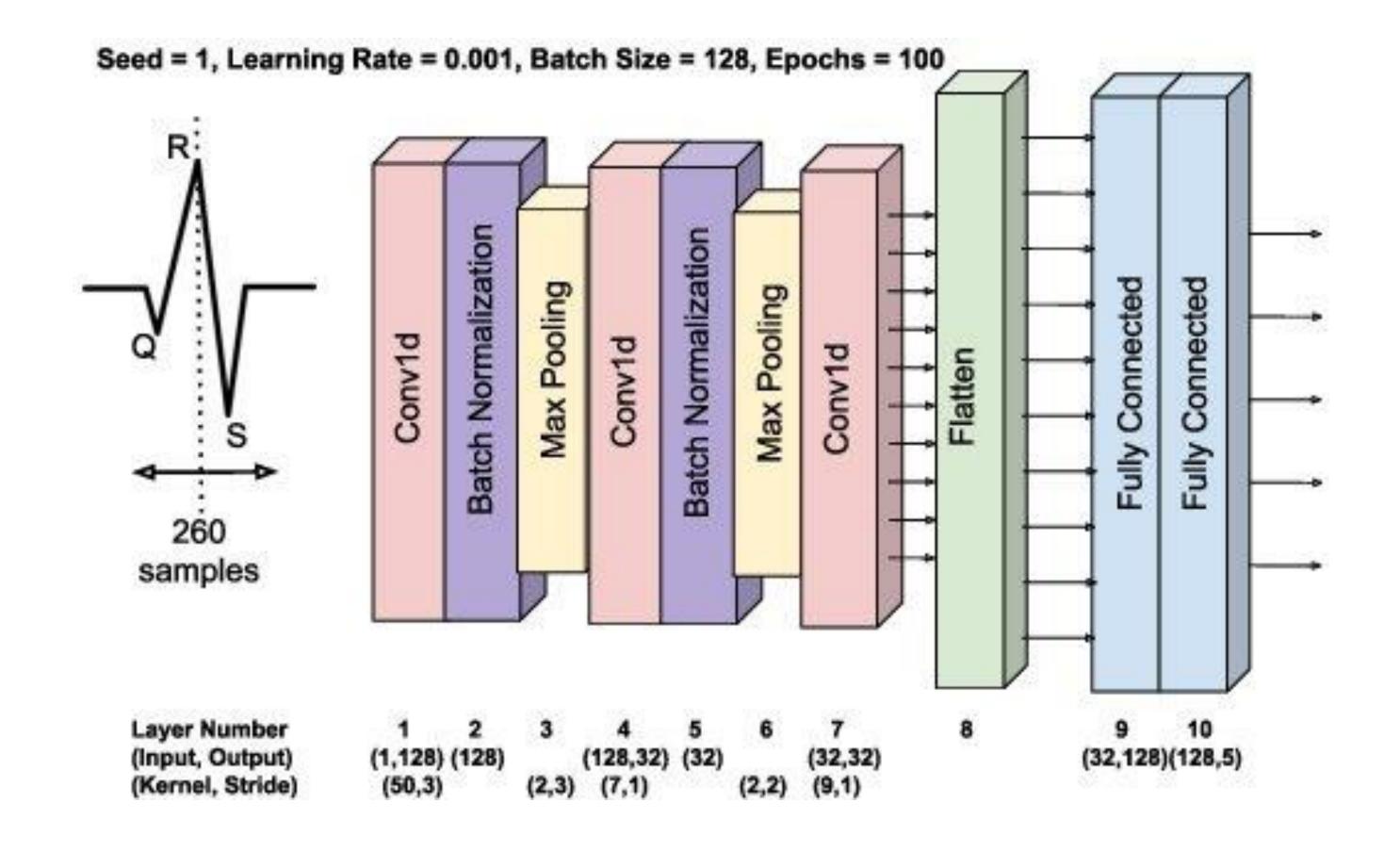
Popular 1D CNNs: Text

Convolutional Neural Networks for Sentence Classification

Yoon Kim
New York University
yhk255@nyu.edu

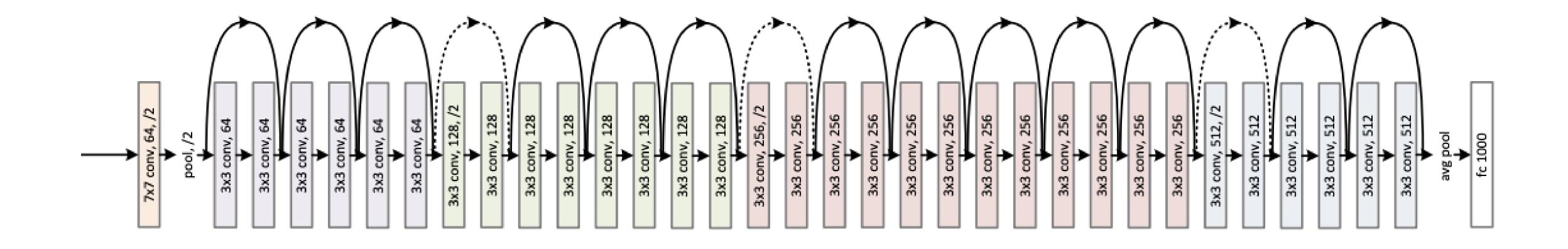


Popular 1D CNNs: Wave Forms



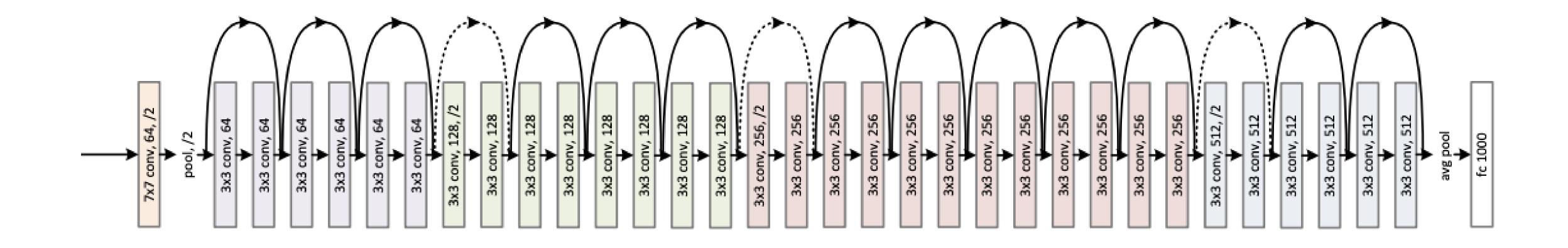
Xiaolin, Li, Barry Cardiff, and Deepu John. "A 1d convolutional neural network for heartbeat classification from single lead ecg." 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2020.

Popular 2D CNNs: ResNets



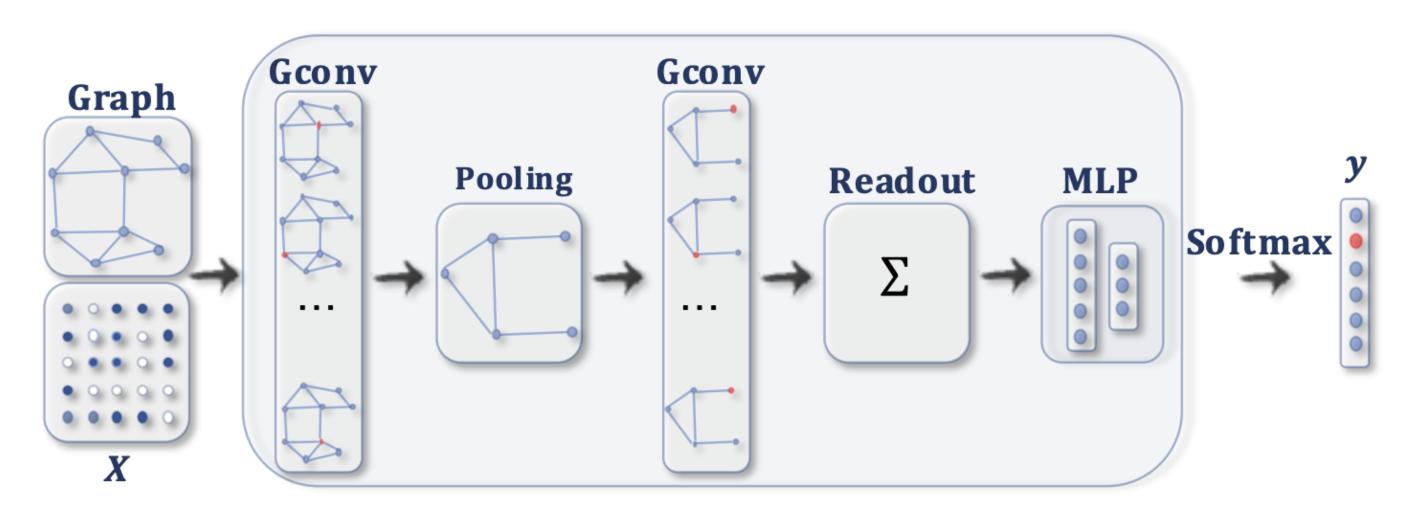
He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Popular 3D CNNs: ResNet3D



Just make the kernels all 3D. Used in Sybil and many other 3D models.

Popular GNNs: Convolutions on graphs



(b) A ConvGNN with pooling and readout layers for graph classification [21]. A graph convolutional layer is followed by a pooling layer to coarsen a graph into sub-graphs so that node representations on coarsened graphs represent higher graph-level representations. A readout layer summarizes the final graph representation by taking the sum/mean of hidden representations of sub-graphs.

Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." *IEEE transactions on neural networks and learning systems* 32.1 (2020): 4-24.

Summary

FFNs are wildly inefficient

Convolutions: Capture local patterns data

Pooling: Spatial invariant method to summarize features

Attention Pooling: Parameterized Weighted Averages

CNNs: NNs with Conv and Pooling building blocks

Applications to text, images, graphs, and more

Questions?

