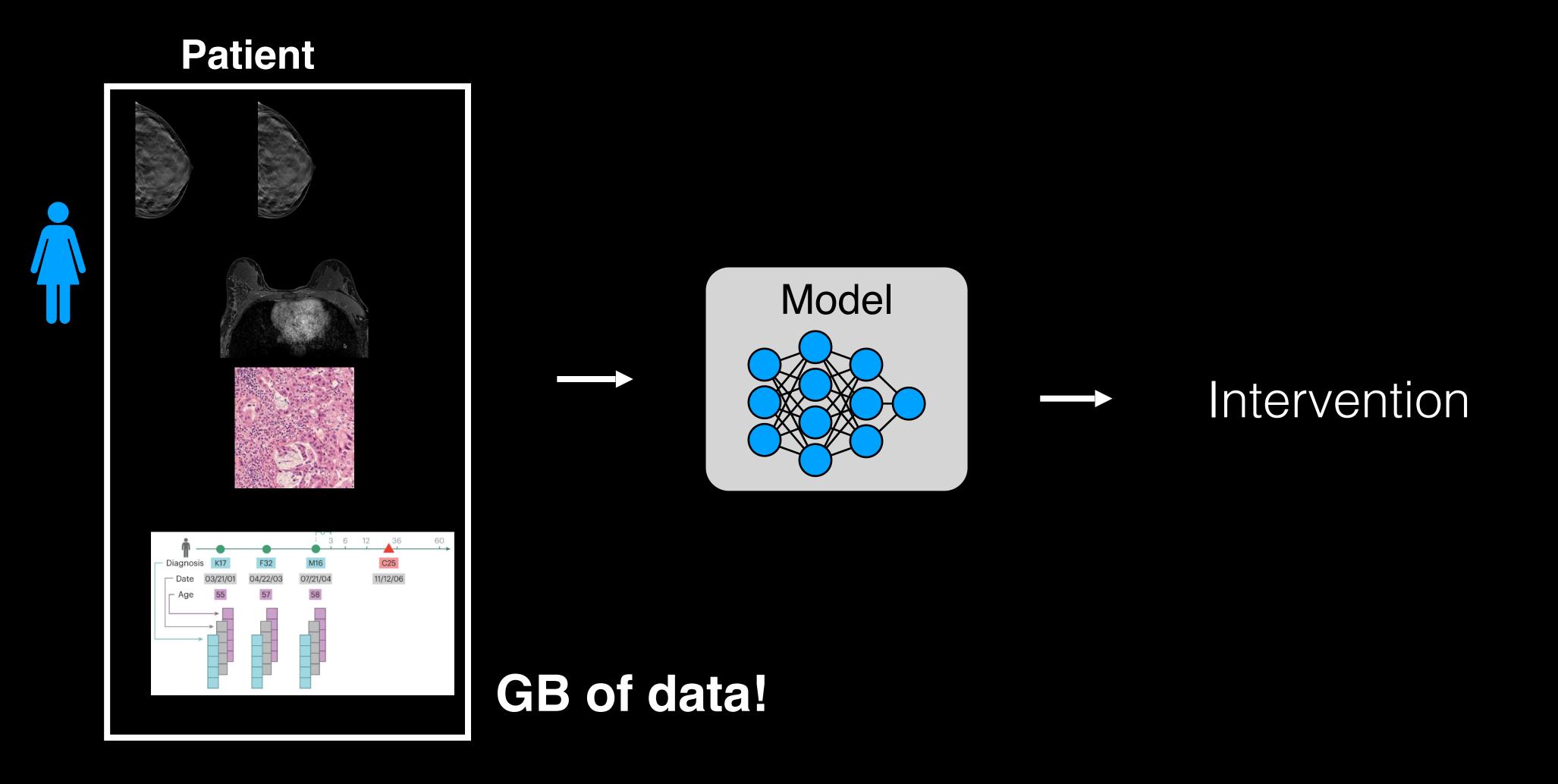
Machine learning to personalize cancer care

Adam Yala, PhD

Assistant Professor

Personalized care as a computational problem



Question: How do we use everything to recommend right intervention at right time?

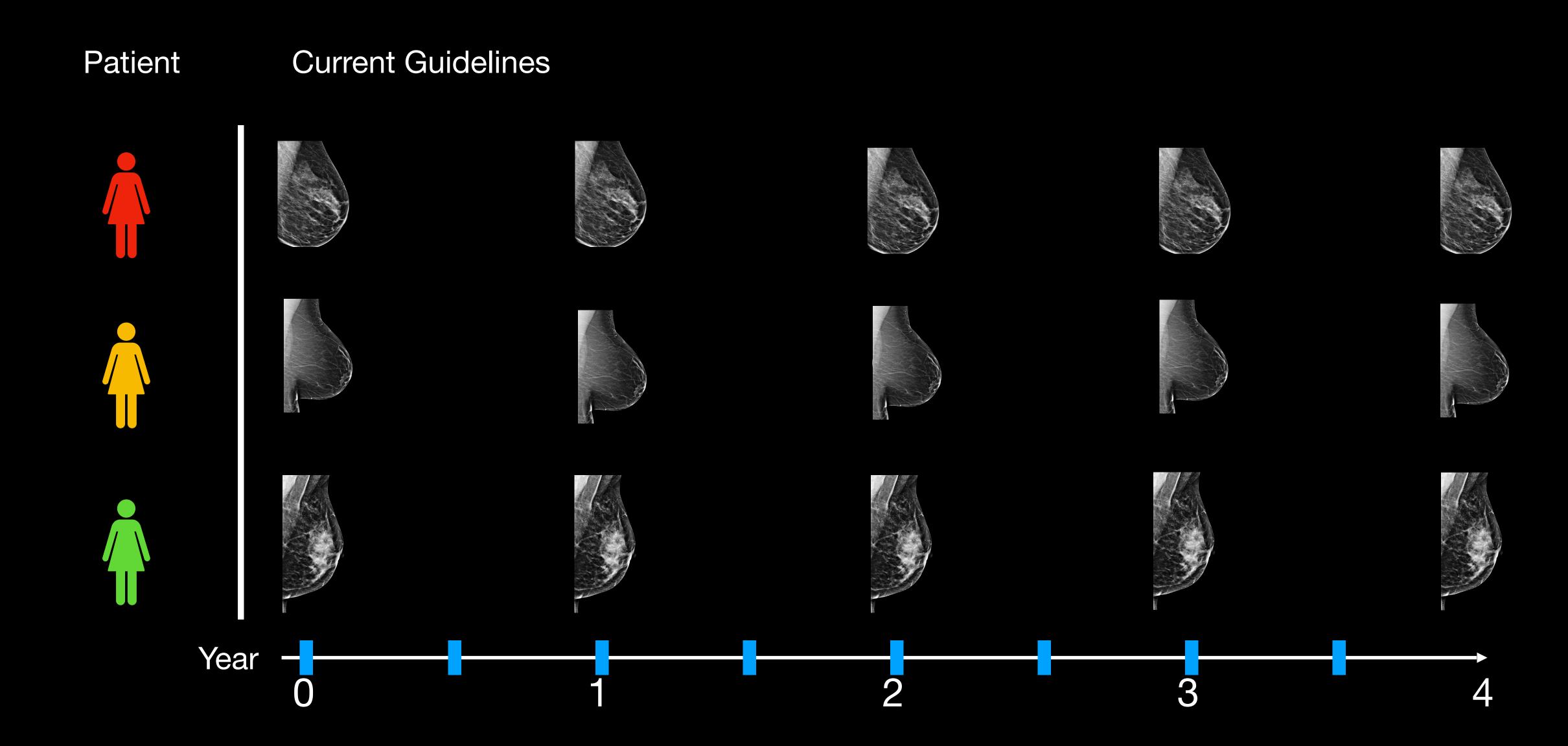
Today: Towards Al-driven care

Prediction Control Translation

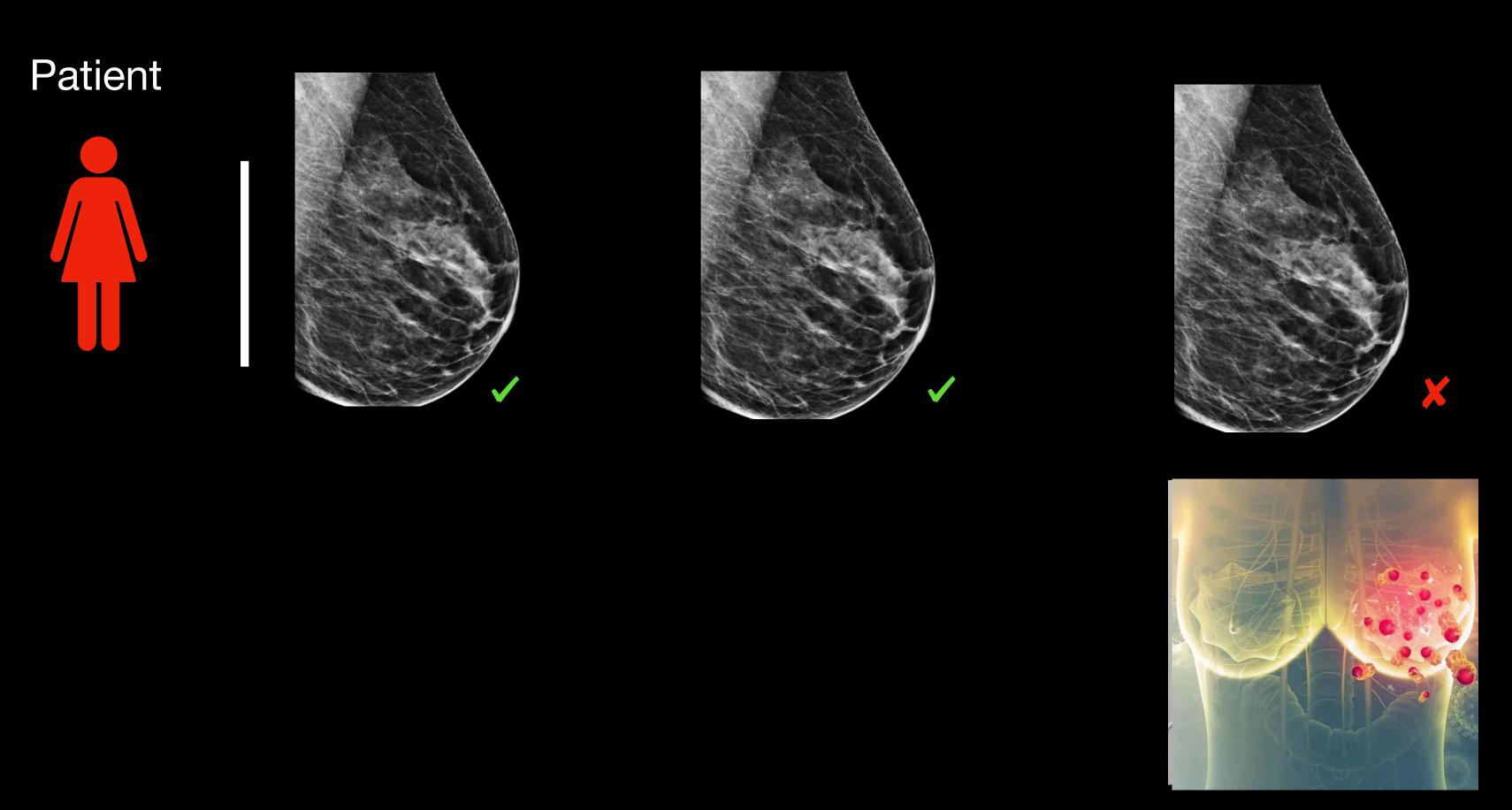
Today: Towards Al-driven care

Prediction

Motivating example: Screening today - one size fits all

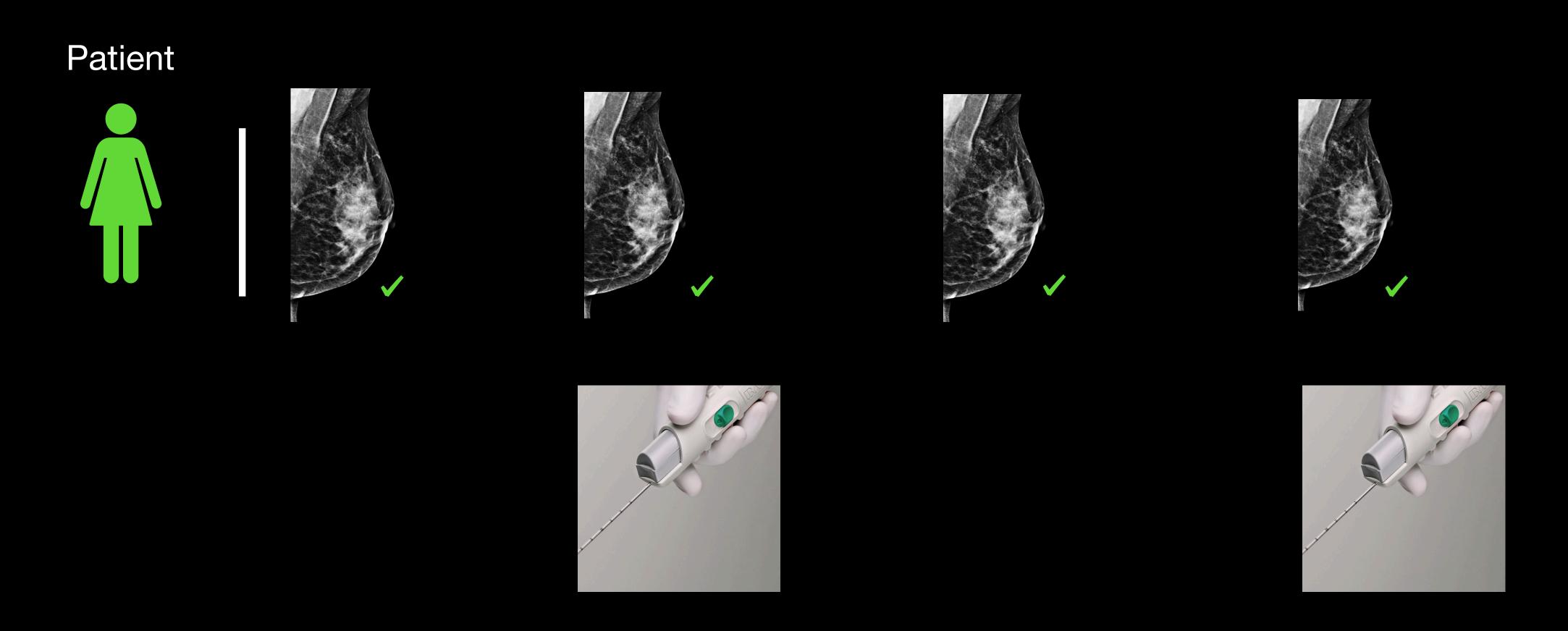


The harms of late diagnosis



Morbid treatment options, poor chances of survival We should have done more

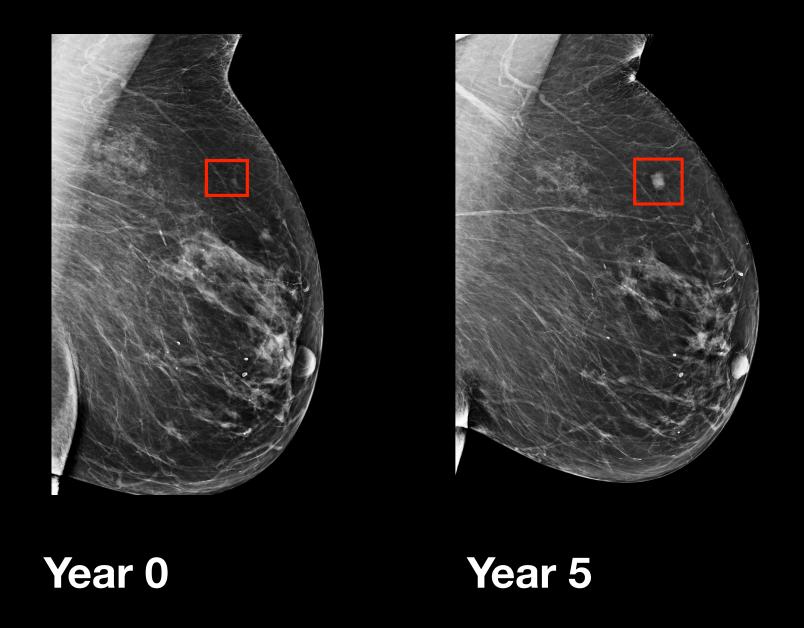
The harms of over screening



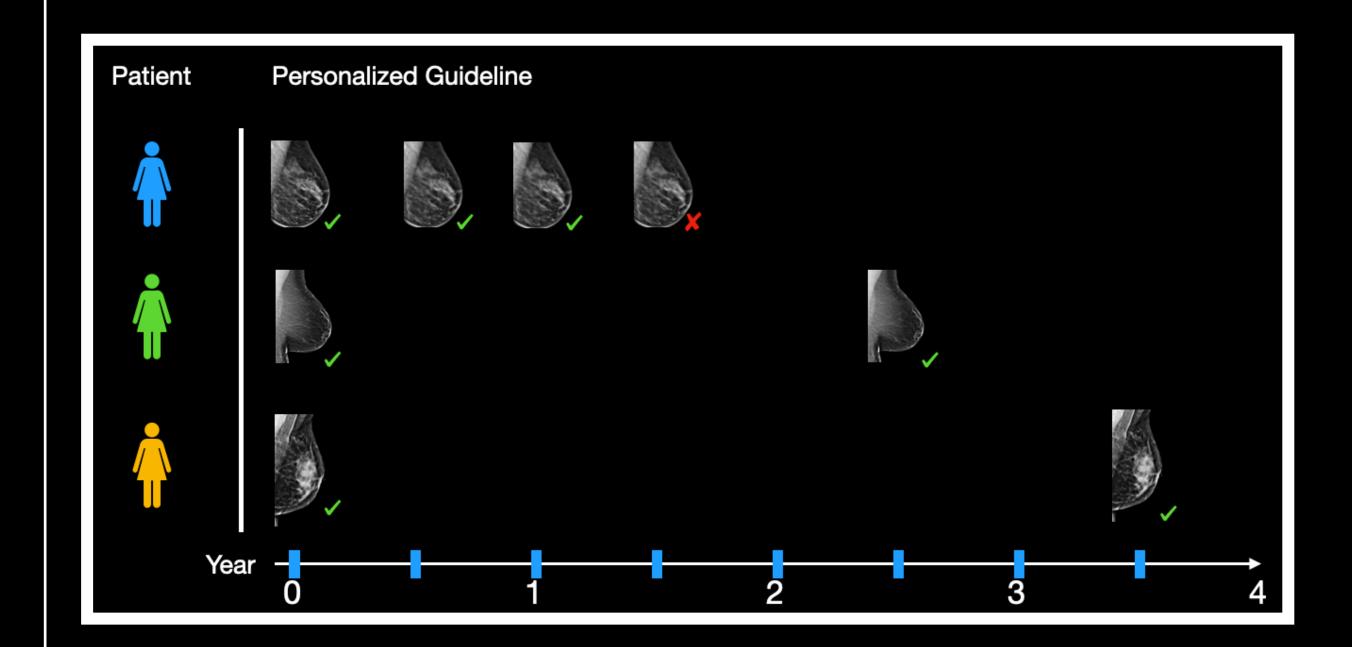
Unnecessary biopsies, terrible anxiety
We should have done less

How to catch cancer earlier

Predict Cancer Risk



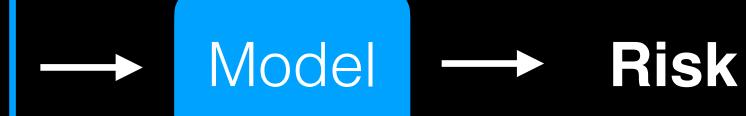
Create personalized screening policy



Obstacle: Current clinical tools are insufficient

Questionnaire based (<< 1KB of data per patient)

Family History
Prior Breast Procedure
Breast Density

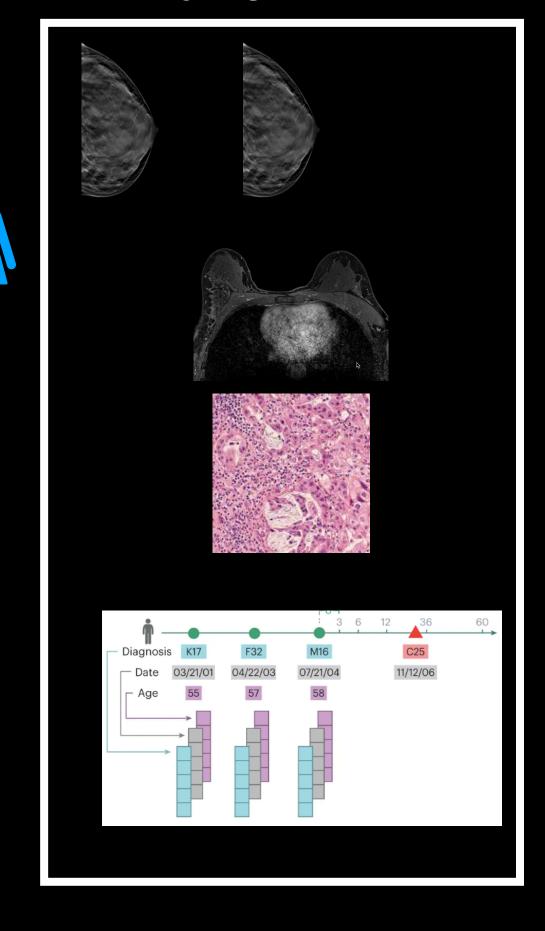


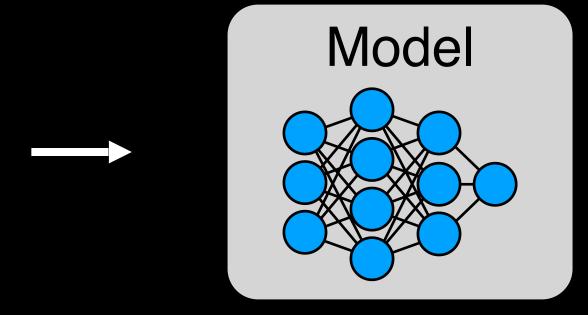
Identify <25% of future cancers as "high risk"

>95% of "high risk" patients won't get cancer

Personalized screening as a computational problem

Patient

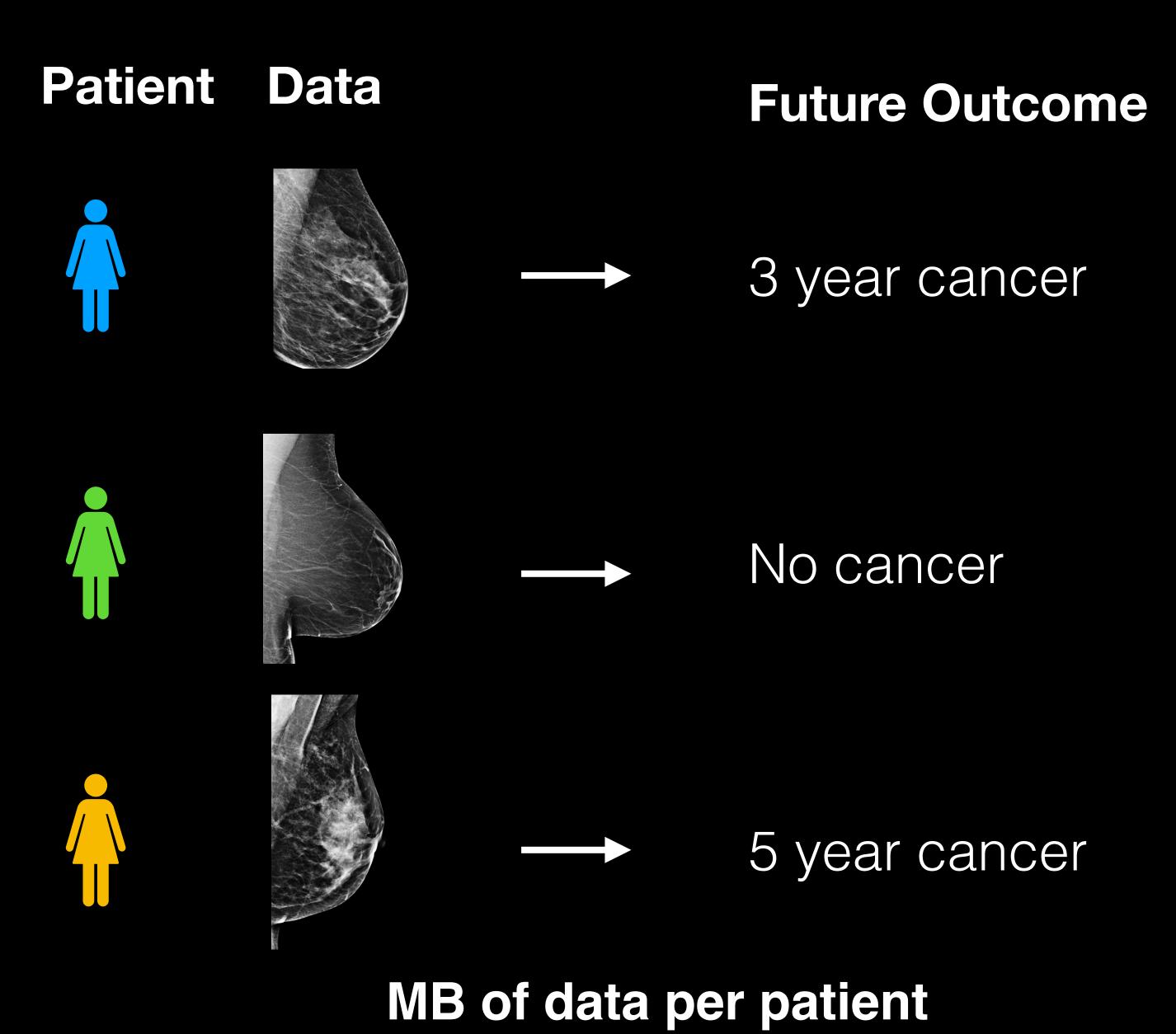




Screening plan

GB of data!

Where are we now? From bits to MB



Journal of Clinical Oncology®
An American Society of Clinical Oncology Journal

Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk Model

Adam Yala, MEng^{1,2}; Peter G. Mikhael, BS^{1,2}; Fredrik Strand, MD, PhD^{3,4}; Gigin Lin, MD, PhD⁵; Siddharth Satuluru, BS⁶;

SCIENCE TRANSLATIONAL MEDICINE

Toward robust mammography-based models for breast cancer risk

Adam Yala^{1,2}*, Peter G. Mikhael^{1,2}, Fredrik Strand^{3,4}, Gigin Lin⁵, Kevin Smith^{6,7}, Yung-Liang Leslie Lamb⁸, Kevin Hughes⁹, Constance Lehman^{8†}, Regina Barzilay^{1,2†}

Radiology

A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction

Adam Yala, MEng • Constance Lehman, MD, PhD • Tal Schuster, MS • Tally Portnoi, BS • Regina Barzilay, PhD

Journal of Clinical Oncology®
An American Society of Clinical Oncology Journal

Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography

Peter G. Mikhael, BSc^{1,2}; Jeremy Wohlwend, ME^{1,2}; Adam Yala, PhD^{1,2}; Ludvig Karstens, MSc^{1,2}; Justin Xiang, ME^{1,2}; Angelo K. Takigami, MD^{3,4}; Patrick P. Bourgouin, MD^{3,4}; PuiYee Chan, PhD⁵; Sofiane Mrah, MSc⁴; Wael Amayri, BSc⁴; Yu-Hsiang Juan, MD^{6,7}; Cheng-Ta Yang, MD^{6,8}; Yung-Liang Wan, MD^{6,7}; Gigin Lin, MD, PhD^{6,7}; Lecia V. Sequist, MD, MPH^{3,5};

Aside: How can we curate outcomes at scale?

Data Curation

Human-level information extraction from clinical reports with fine-tuned language models

Longchao Liu, Long Lian, Yiyan Hao, Aidan Pace, Elaine Kim, Nour Homsi, D Yash Pershad, Liheng Lai, Thomas Gracie, Ashwin Kishtagari, Peter R Carroll, Alexander G Bick, D Anobel Y Odisho, Maggie Chung, Adam Yala

doi: https://doi.org/10.1101/2024.11.18.24317466

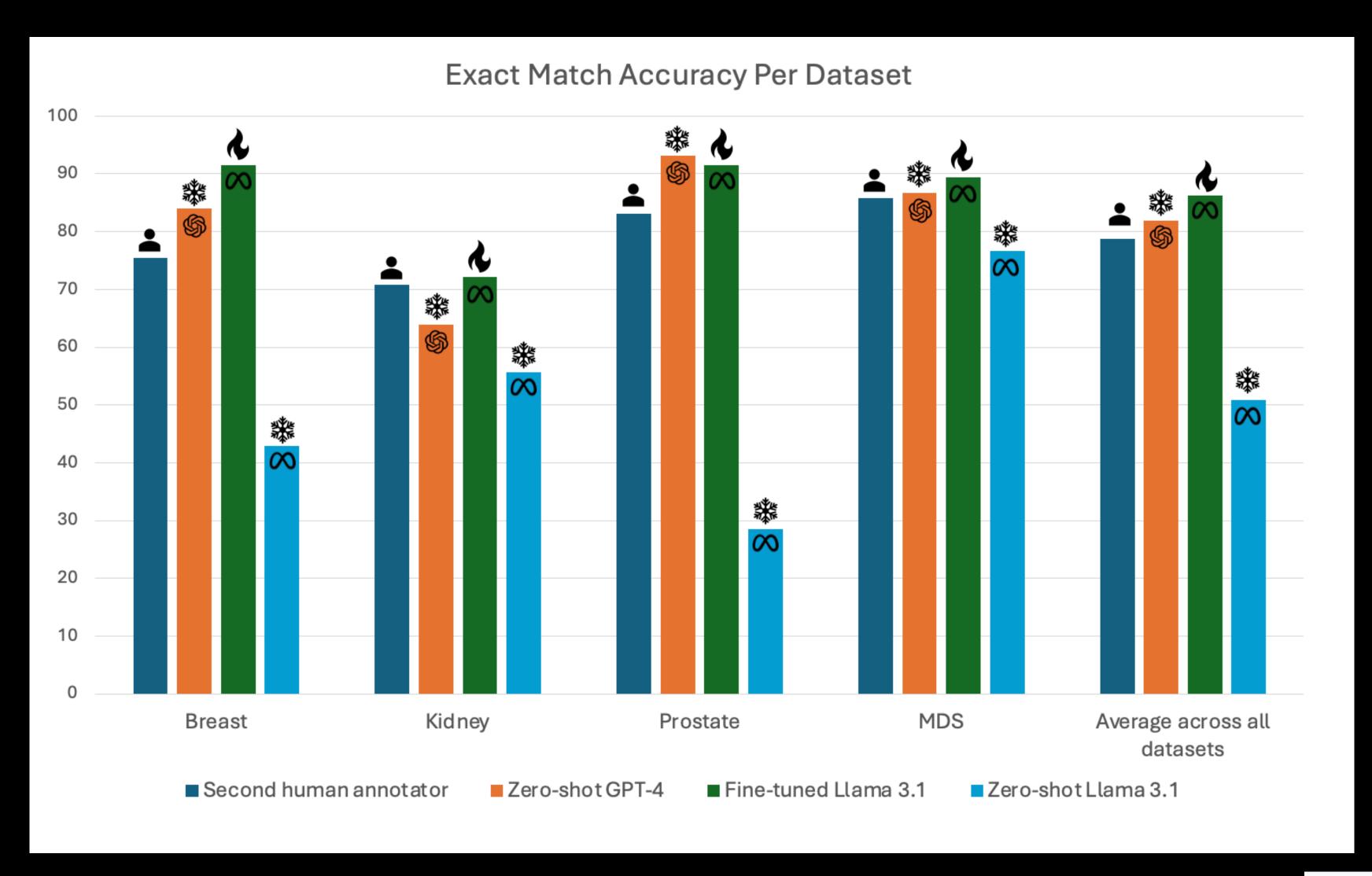
Led by:

Joy Liu

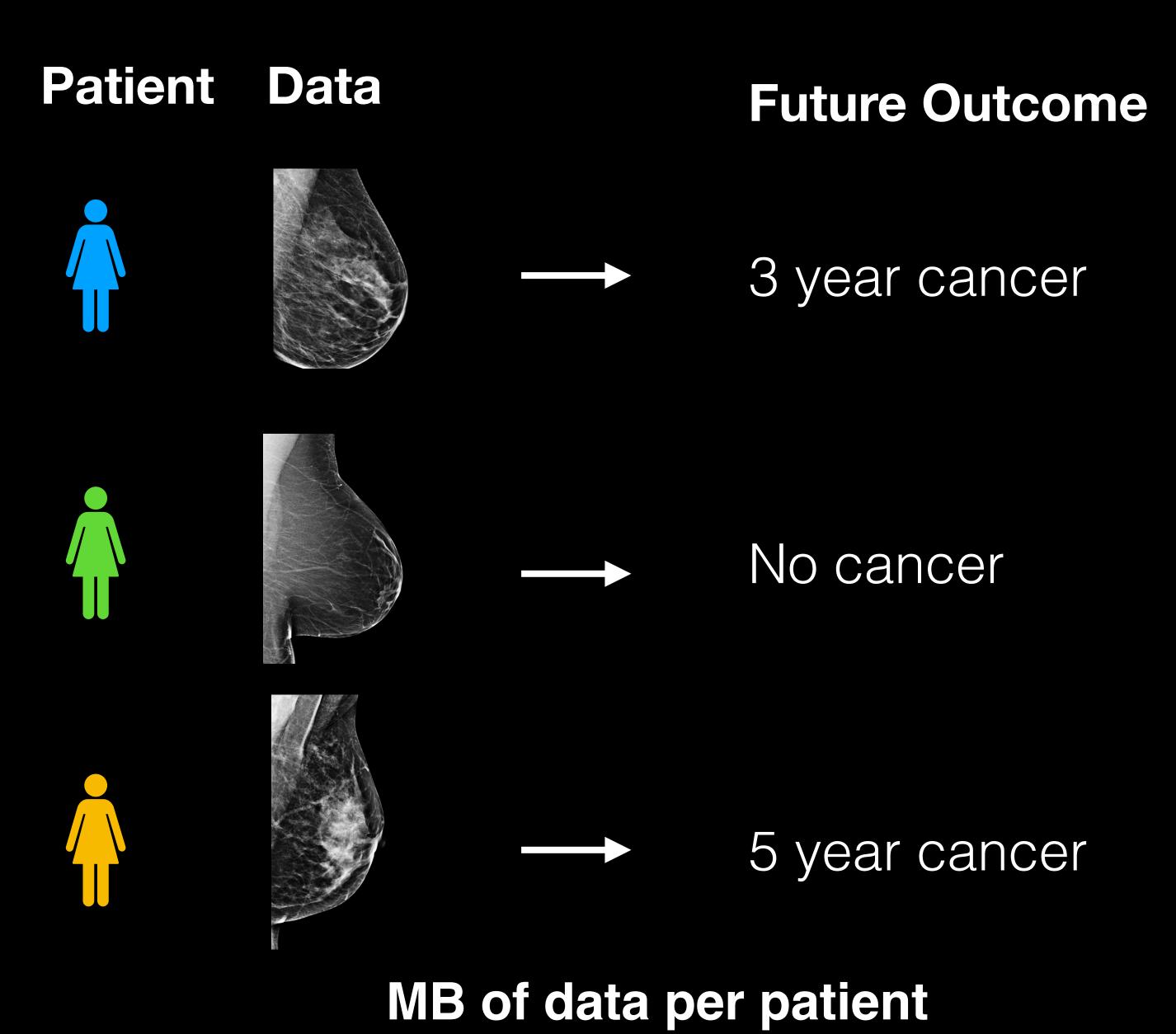


Tony Lian

Strata: Human-level performance for less than 5\$ of compute



Where are we now? From bits to MB



Journal of Clinical Oncology®
An American Society of Clinical Oncology Journal

Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk Model

Adam Yala, MEng^{1,2}; Peter G. Mikhael, BS^{1,2}; Fredrik Strand, MD, PhD^{3,4}; Gigin Lin, MD, PhD⁵; Siddharth Satuluru, BS⁶;

SCIENCE TRANSLATIONAL MEDICINE

Toward robust mammography-based models for breast cancer risk

Adam Yala^{1,2}*, Peter G. Mikhael^{1,2}, Fredrik Strand^{3,4}, Gigin Lin⁵, Kevin Smith^{6,7}, Yung-Liang Leslie Lamb⁸, Kevin Hughes⁹, Constance Lehman^{8†}, Regina Barzilay^{1,2†}

Radiology

A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction

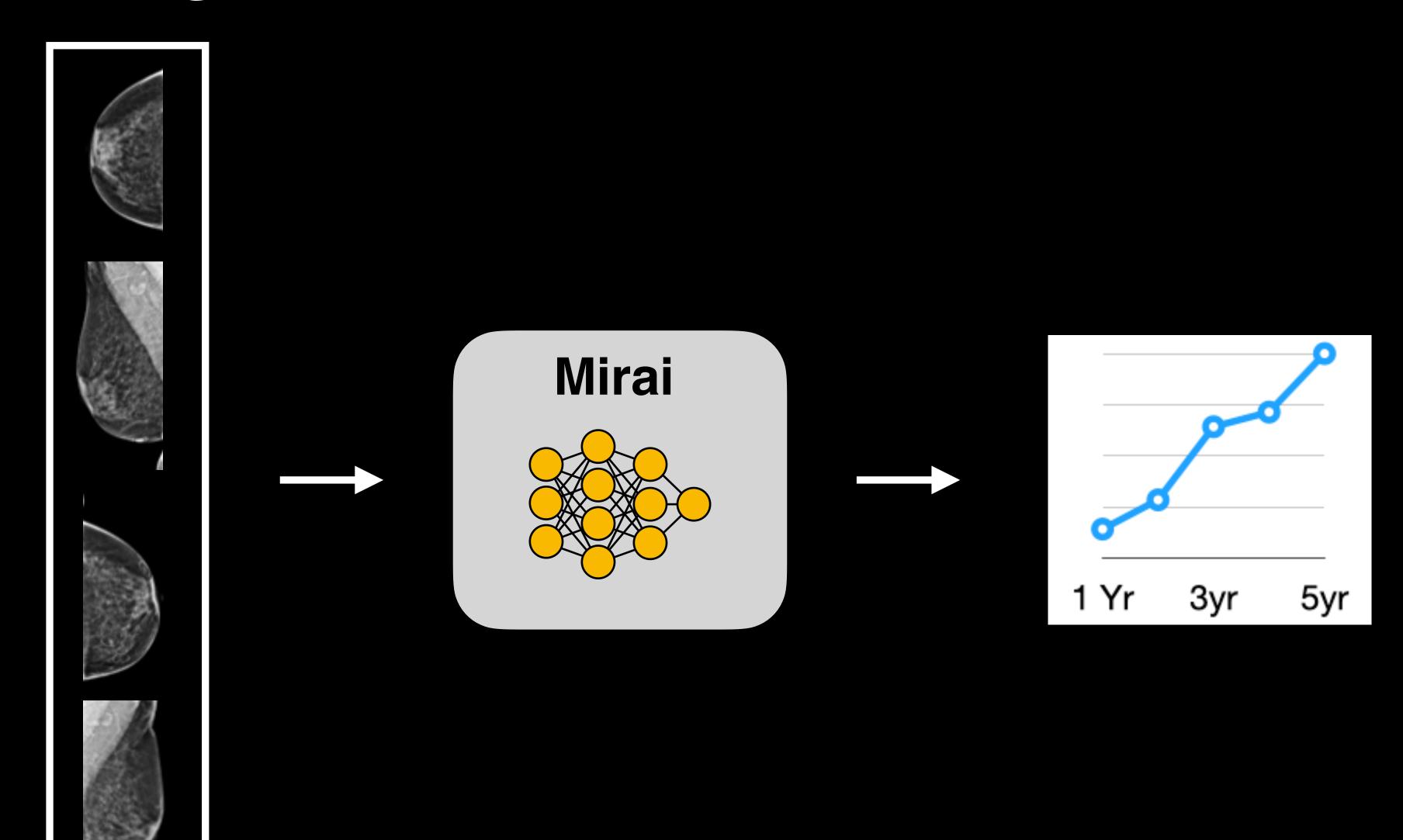
Adam Yala, MEng • Constance Lehman, MD, PhD • Tal Schuster, MS • Tally Portnoi, BS • Regina Barzilay, PhD

Journal of Clinical Oncology®
An American Society of Clinical Oncology Journal

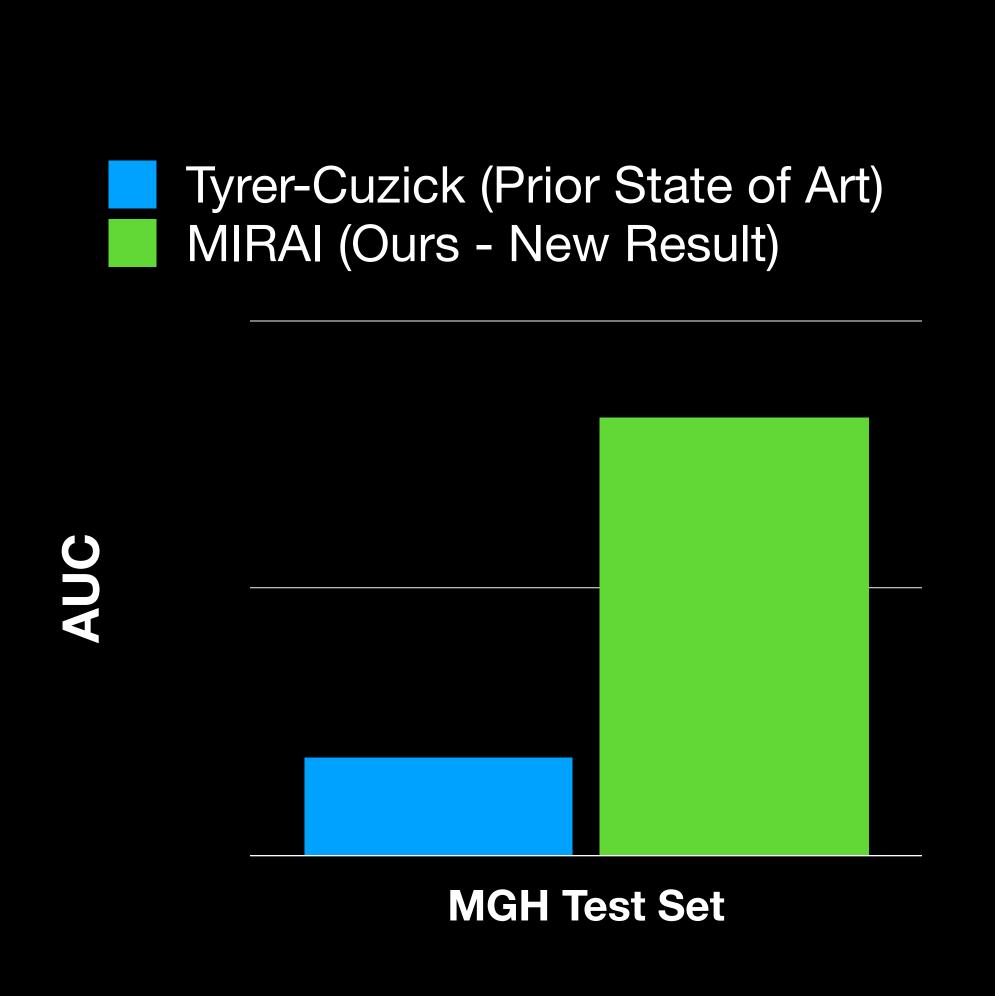
Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography

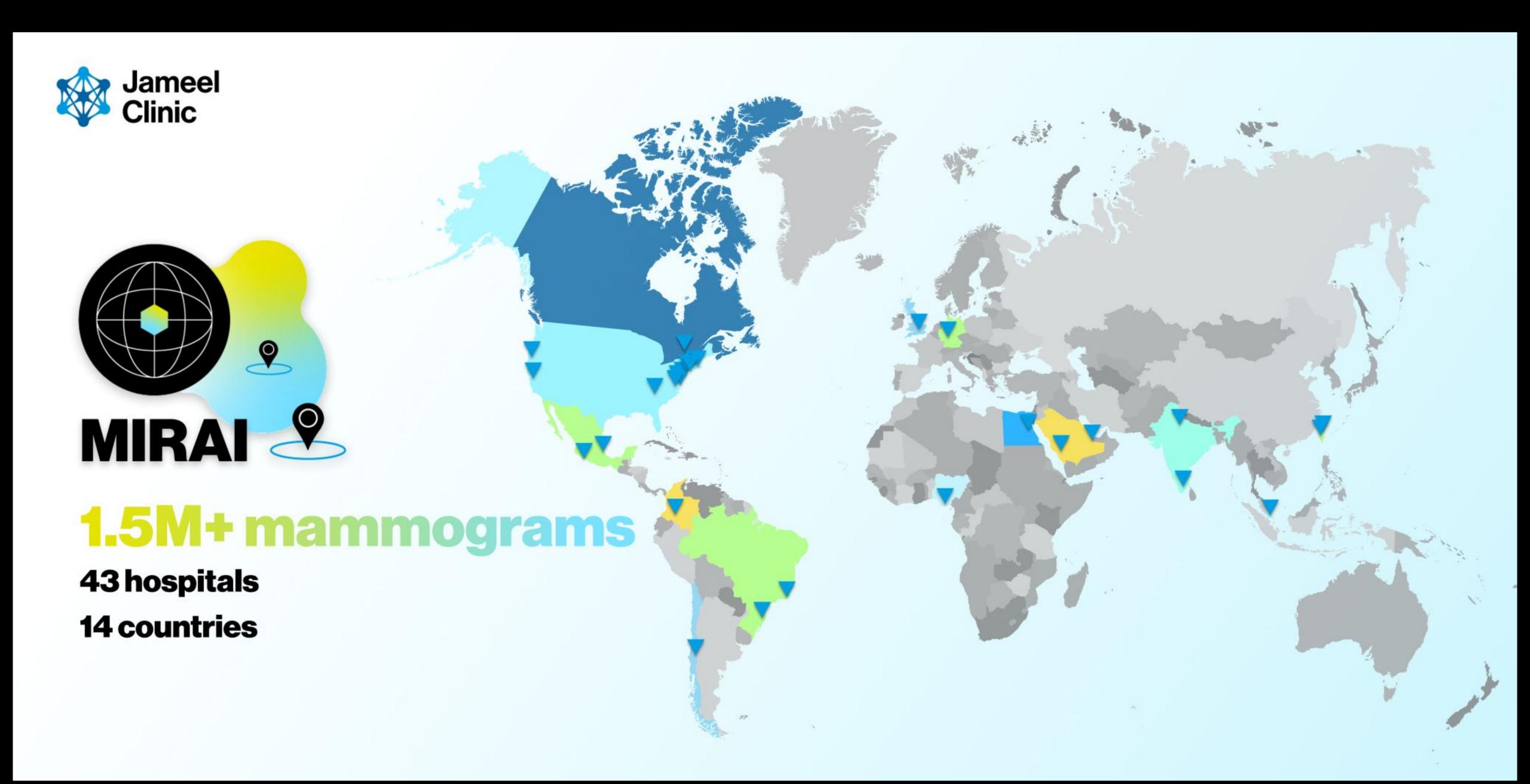
Peter G. Mikhael, BSc^{1,2}; Jeremy Wohlwend, ME^{1,2}; Adam Yala, PhD^{1,2}; Ludvig Karstens, MSc^{1,2}; Justin Xiang, ME^{1,2}; Angelo K. Takigami, MD^{3,4}; Patrick P. Bourgouin, MD^{3,4}; PuiYee Chan, PhD⁵; Sofiane Mrah, MSc⁴; Wael Amayri, BSc⁴; Yu-Hsiang Juan, MD^{6,7}; Cheng-Ta Yang, MD^{6,8}; Yung-Liang Wan, MD^{6,7}; Gigin Lin, MD, PhD^{6,7}; Lecia V. Sequist, MD, MPH^{3,5};

Mirai: Image-based Risk model

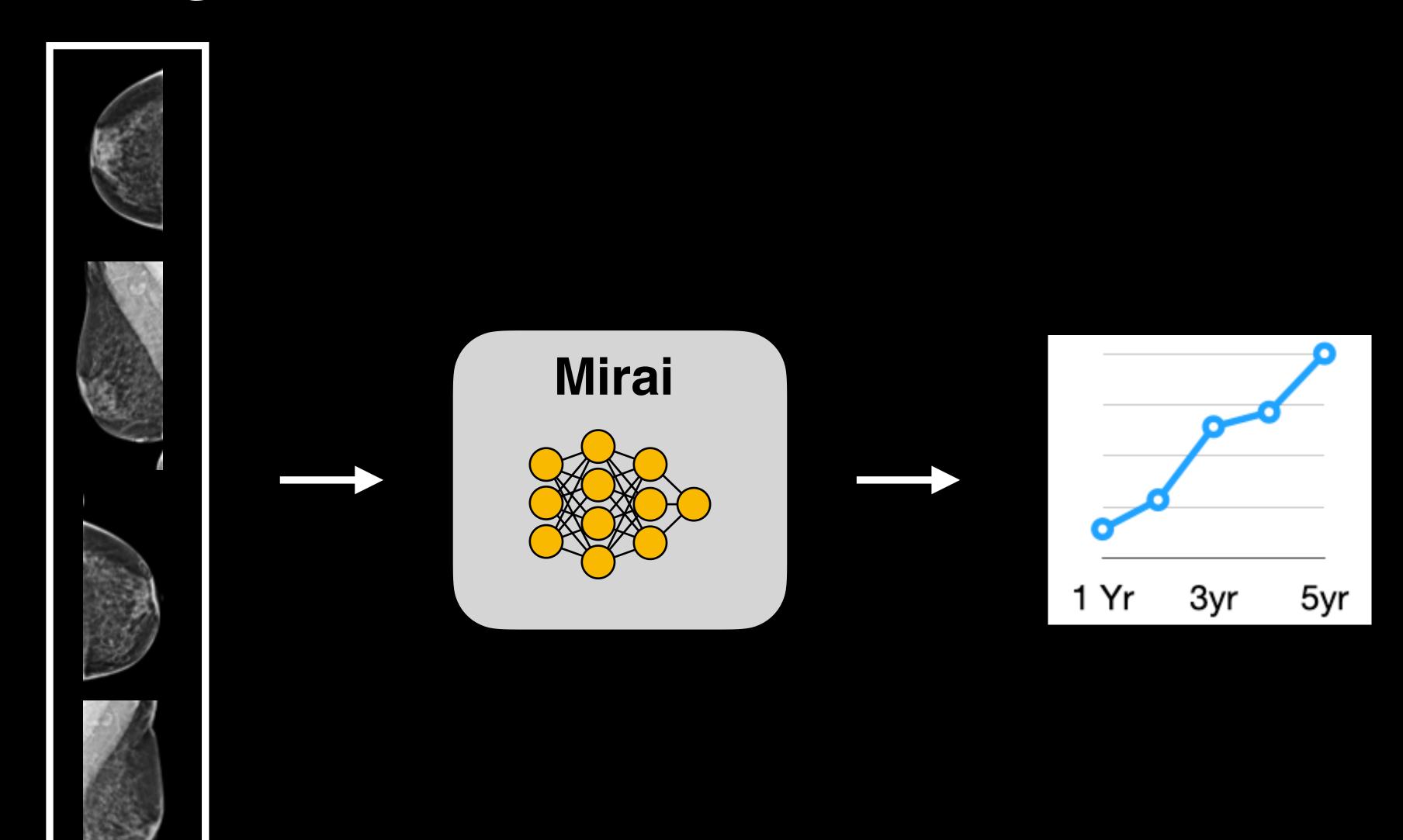


Maintains accuracy across diverse populations

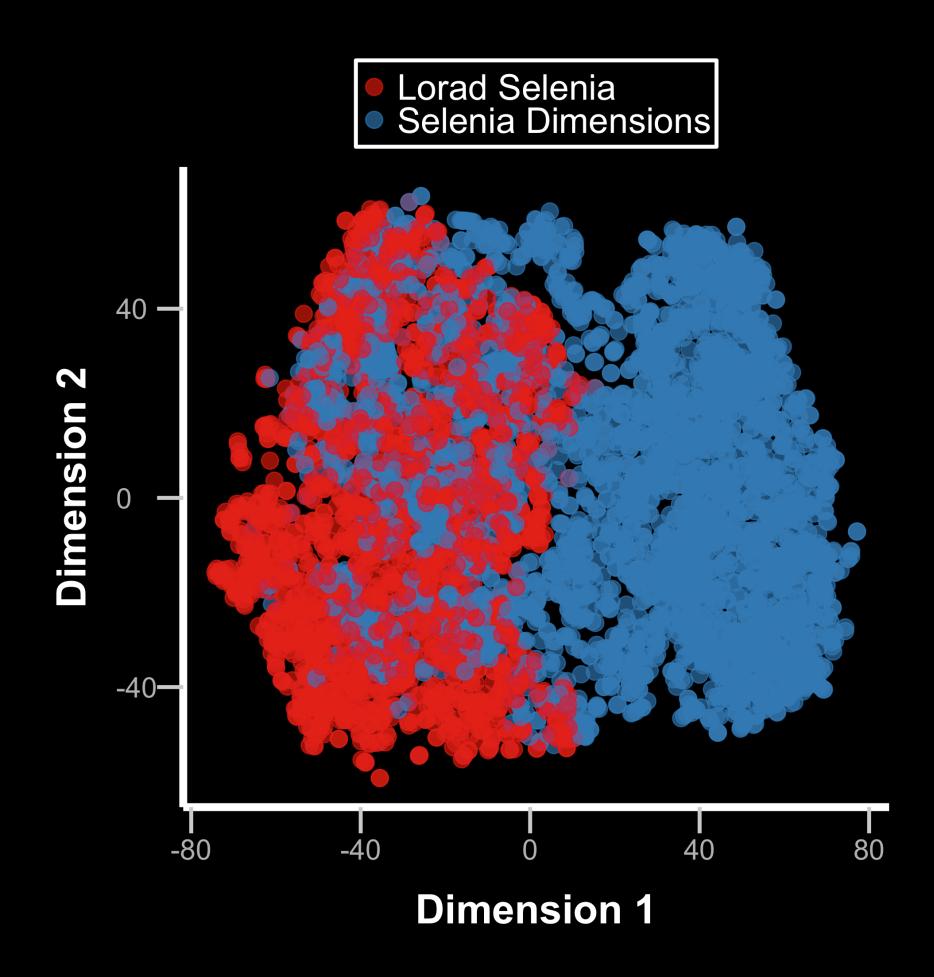




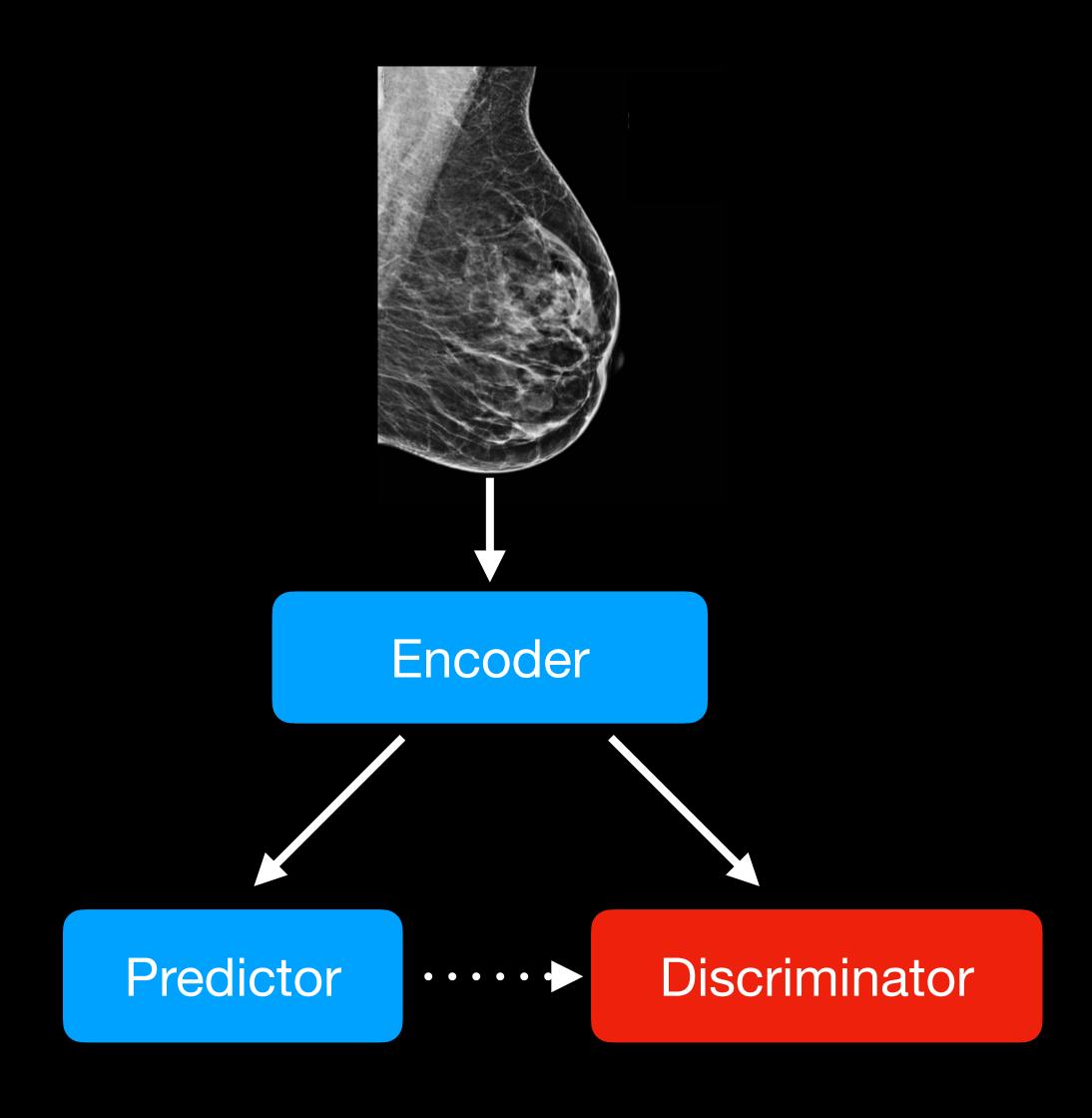
Mirai: Image-based Risk model



Problem 1: Device Invariance



Problem 1: Device Invariance

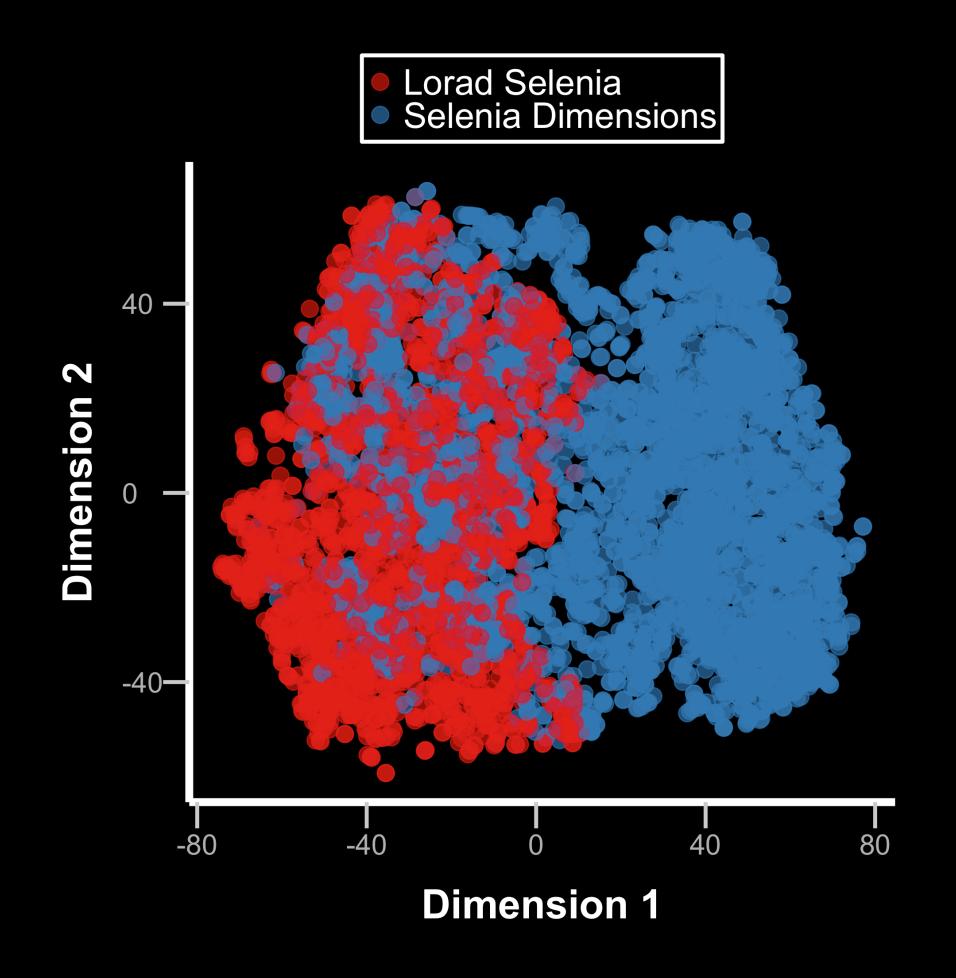


Objective:

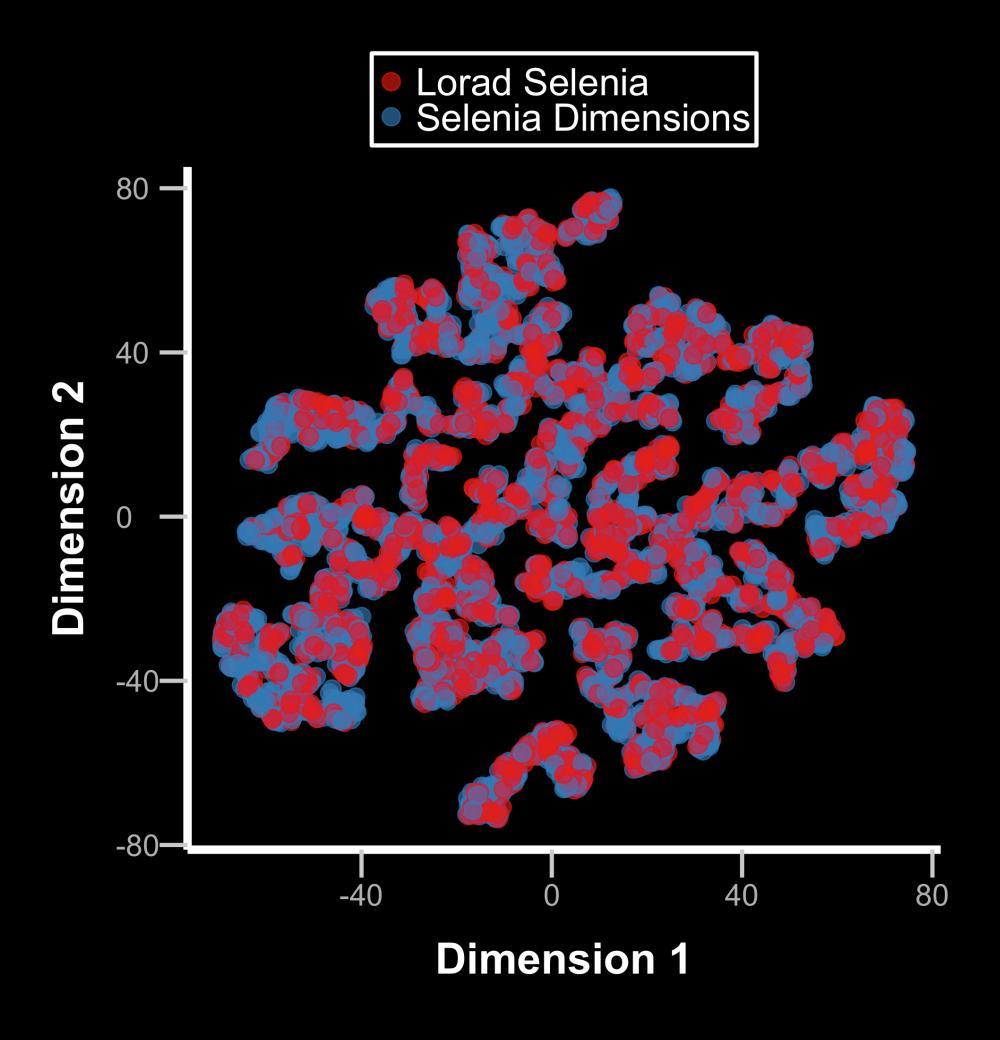
Max accuracy Predictor

Min accuracy Discriminator

Problem 1: Device Invariance

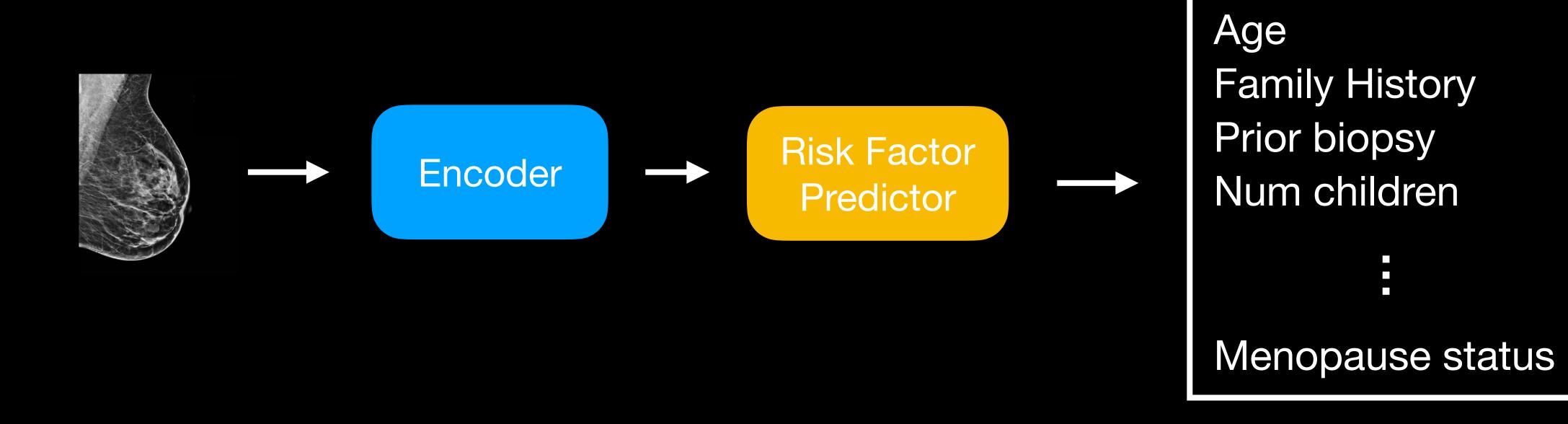


Without Adversary



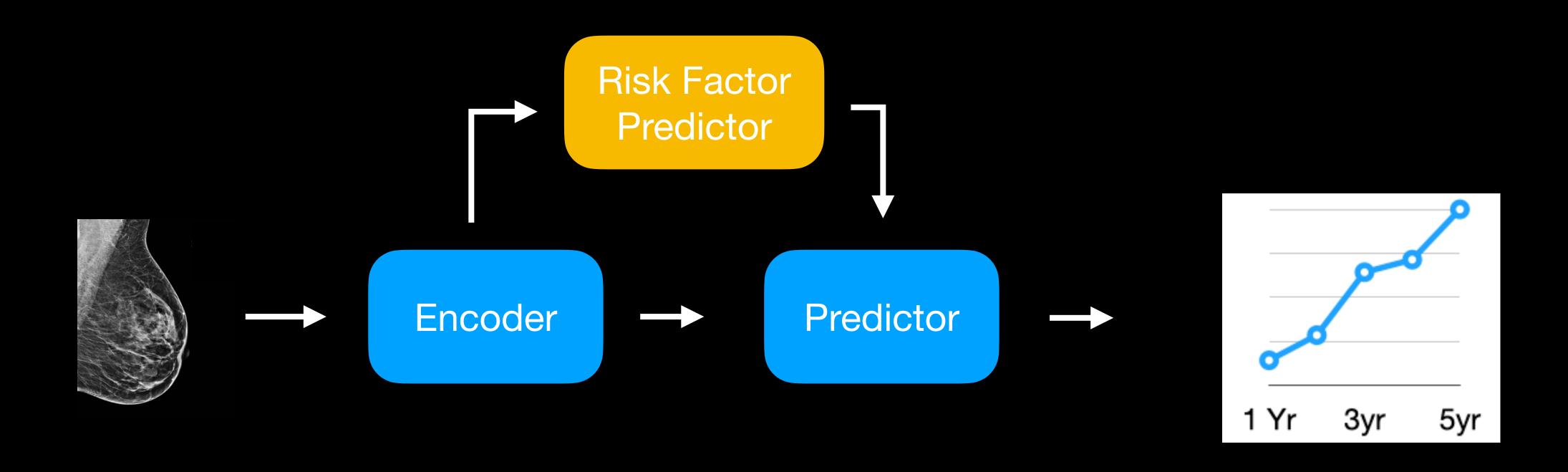
With Adversary

Problem 2: Missing risk factor data

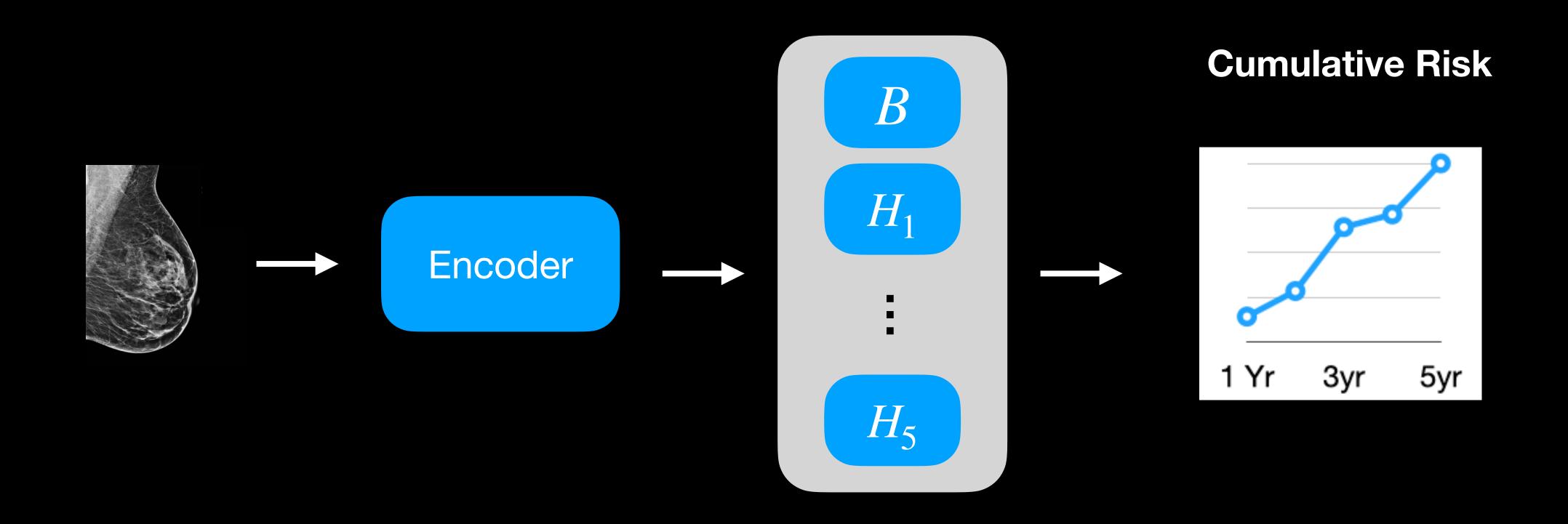


Risk Factors

Problem 2: Missing risk factor data



Problem 3: Modeling risk over time



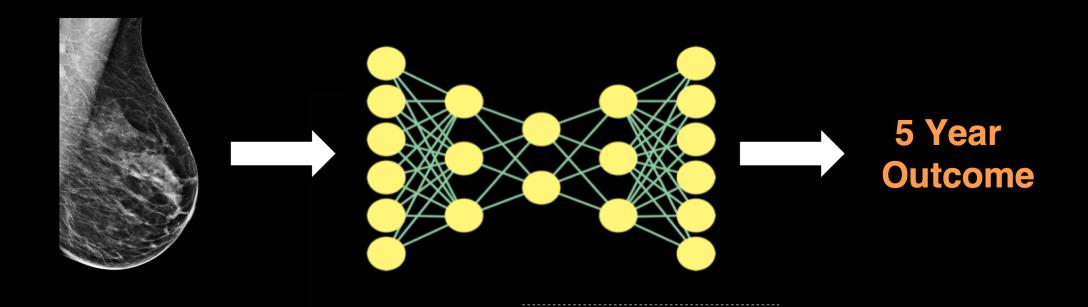
$$P(t_{cancer} = k \mid x) = B(E(x)) + \sum_{i=1}^{n} H_i(E(x))$$

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

CANCER

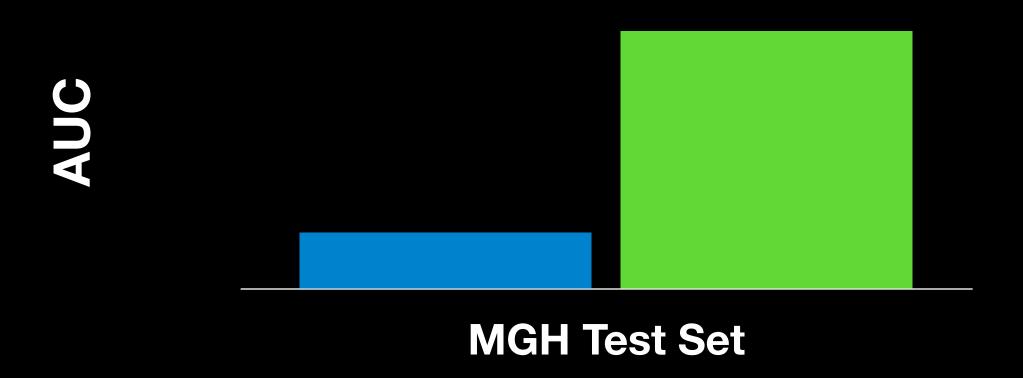
Toward robust mammography-based models for breast cancer risk

Adam Yala^{1,2}*, Peter G. Mikhael^{1,2}, Fredrik Strand^{3,4}, Gigin Lin⁵, Kevin Smith^{6,7}, Yung-Liang Wan⁵, Leslie Lamb⁸, Kevin Hughes⁹, Constance Lehman^{8†}, Regina Barzilay^{1,2†}



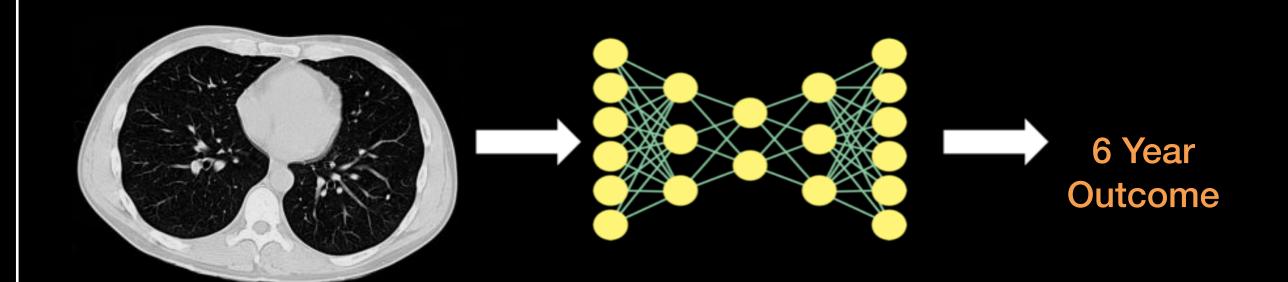
Tyrer-Cuzick (Prior State of Art)

MIRAI (Ours - New Result)



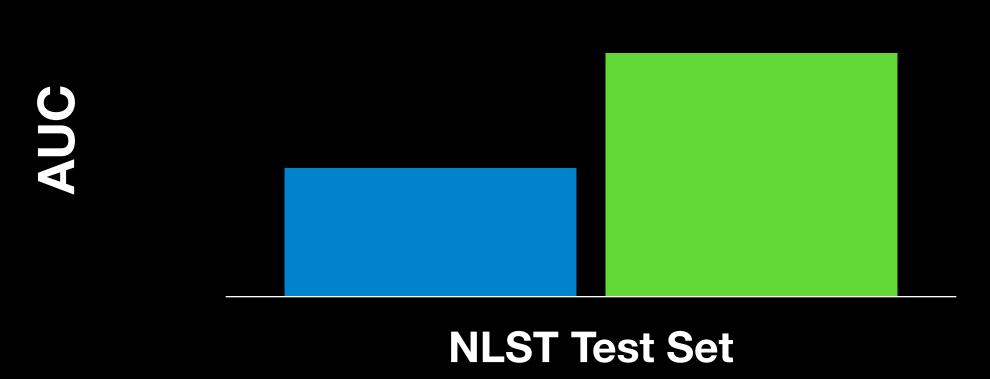
Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography

Peter G. Mikhael, BSc^{1,2}; Jeremy Wohlwend, ME^{1,2}; Adam Yala, PhD^{1,2}; Ludvig Karstens, MSc^{1,2}; Justin Xiang, ME^{1,2}; Angelo K. Takigami, MD^{3,4}; Patrick P. Bourgouin, MD^{3,4}; PuiYee Chan, PhD⁵; Sofiane Mrah, MSc⁴; Wael Amayri, BSc⁴; Yu-Hsiang Juan, MD^{6,7}; Cheng-Ta Yang, MD^{6,8}; Yung-Liang Wan, MD^{6,7}; Gigin Lin, MD, PhD^{6,7}; Lecia V. Sequist, MD, MPH^{3,5}; Florian J. Fintelmann, MD^{3,4}; and Regina Barzilay, PhD^{1,2}

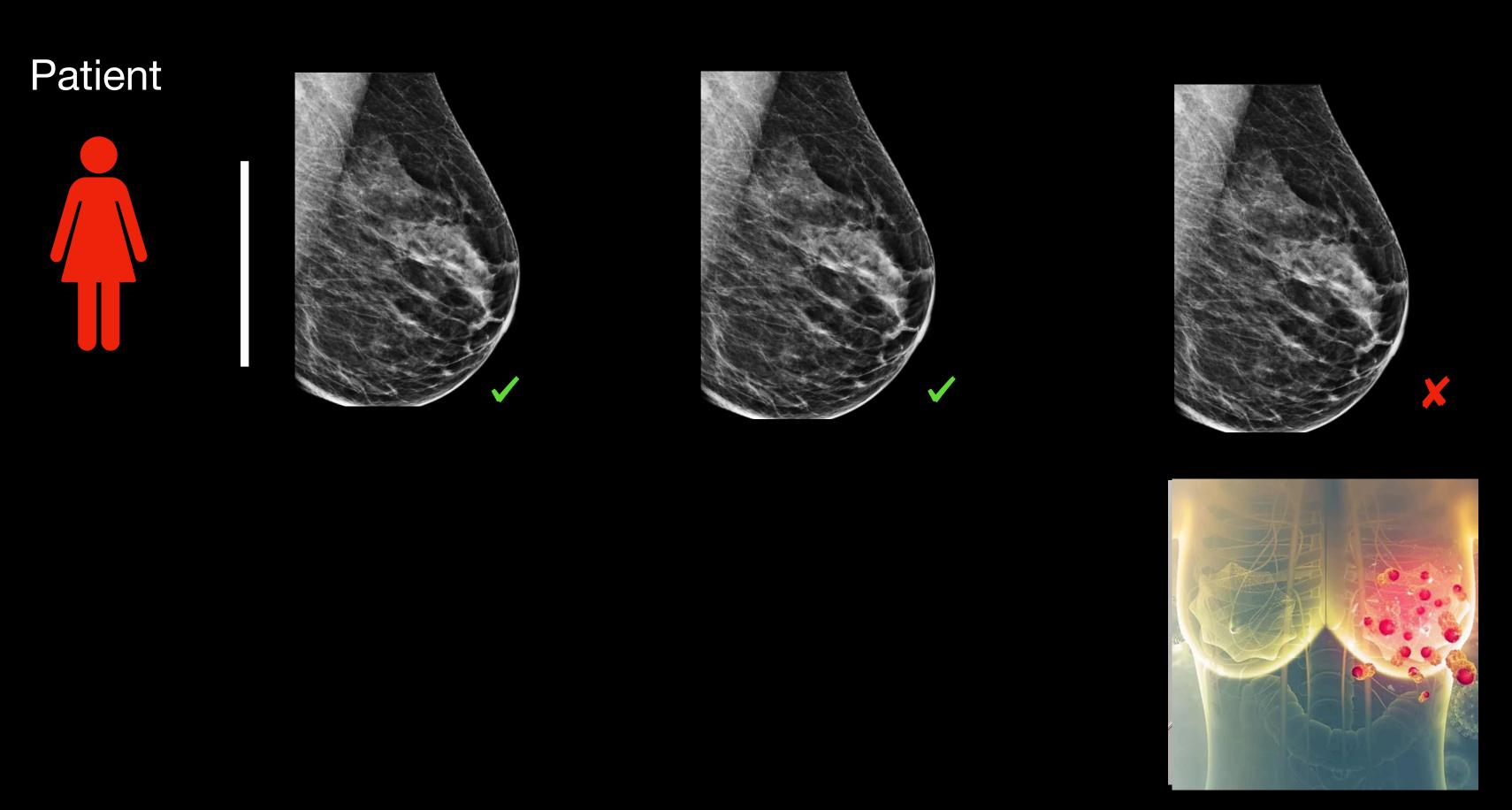


PLCOm2012 (Prior State of Art)

Sybil (Ours - New Result)

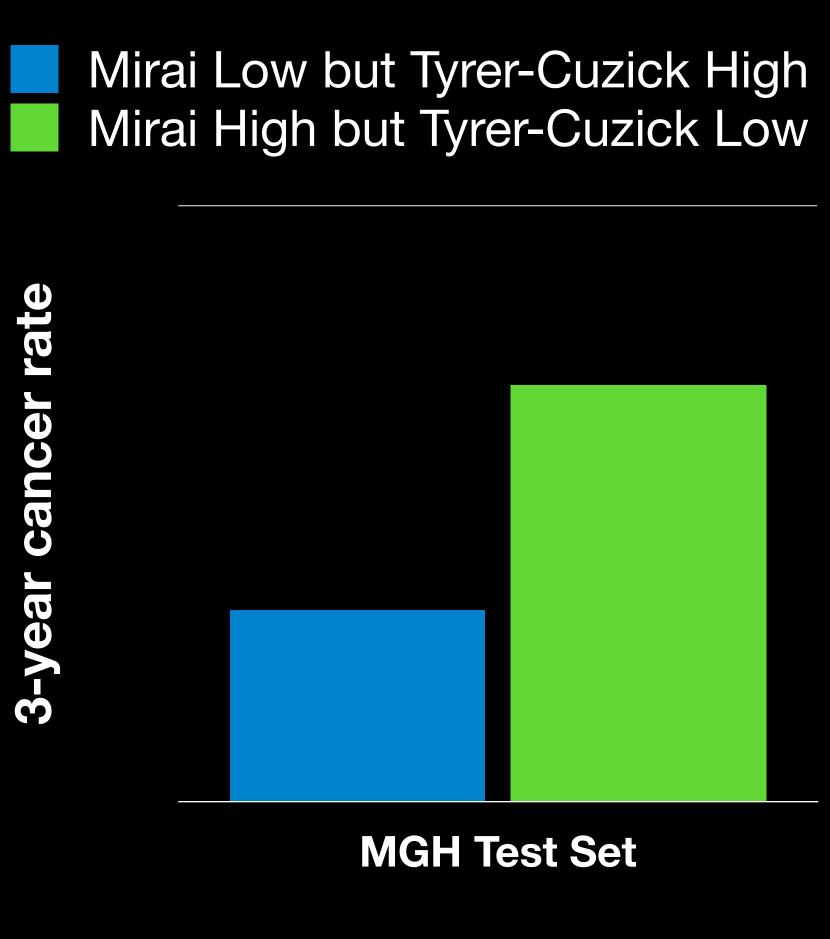


The harms of late diagnosis

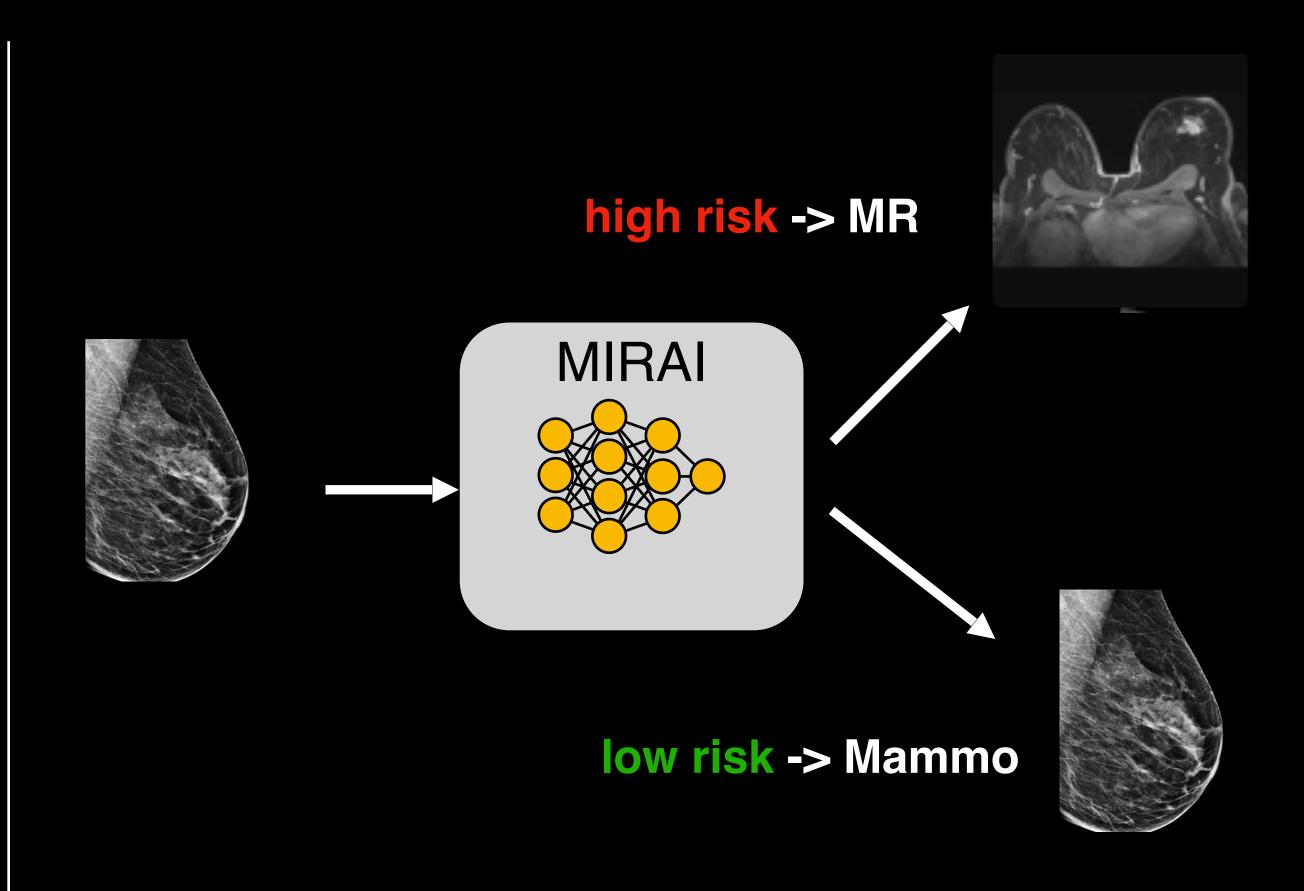


Morbid treatment options, poor chances of survival We should have done more

Ongoing Prospective Trials: Mirai-MRI

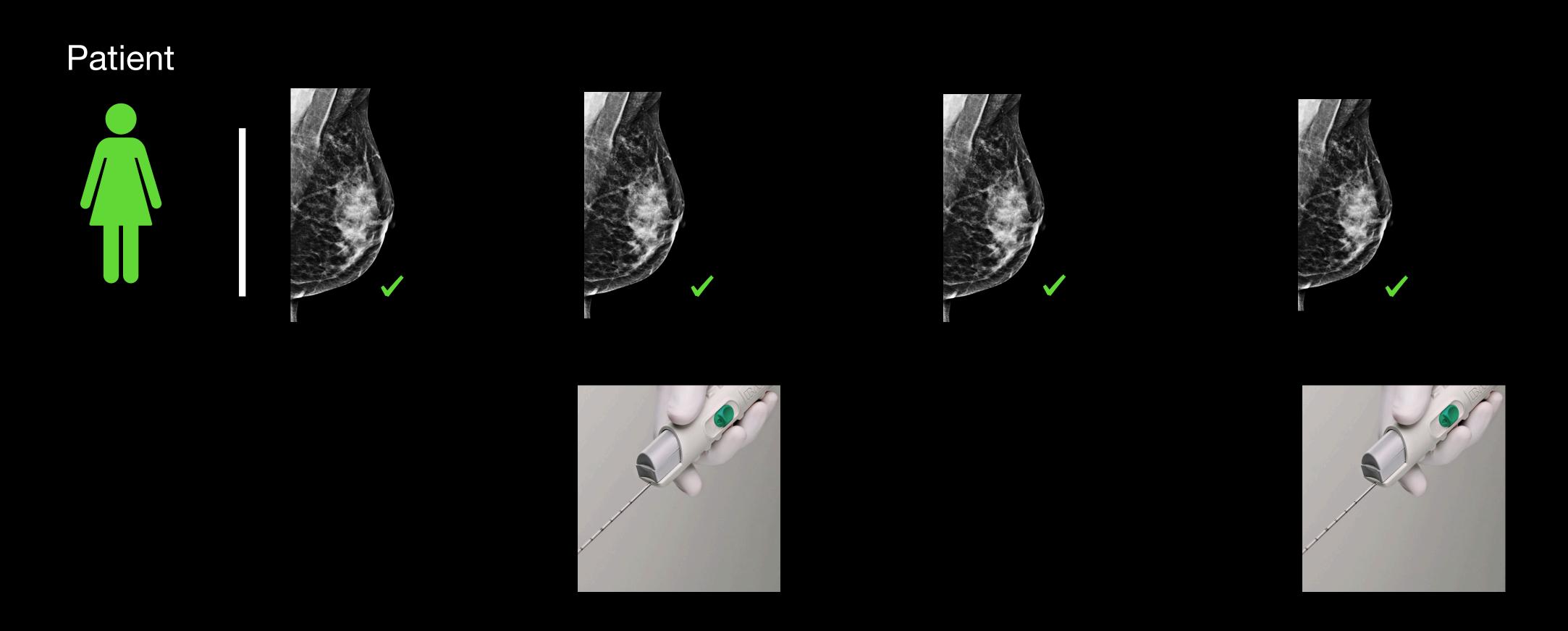


Retrospective analysis



Mirai-based Supplemental Imaging NCT 05968157

The harms of over screening



Unnecessary biopsies, terrible anxiety
We should have done less

Ongoing Prospective Trials: Mirai-SDA

SDA Workflow:

- Realtime Al-based cancer risk assessment
- Invite high risk patient for same-day diagnostic exam
- Prelim results: Reducing time to diagnosis from 38 days to 58 minutes

Today: Towards Al-driven care

Control

Both Mirai-MRI and Mirai-SDA are heuristic control algorithms.

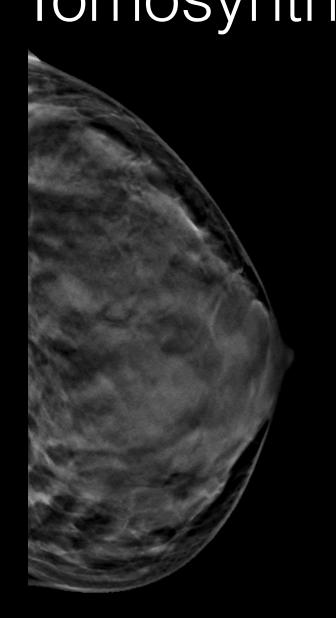
Opportunities to design guidelines as learned algorithms!

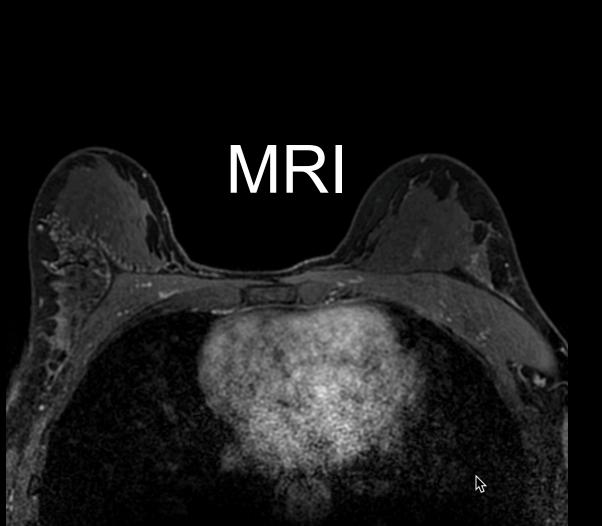
Next Al Leap: Modeling full patient context

MB of data

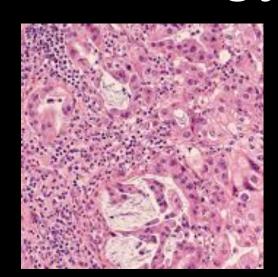
2D Mammogram

Tomosynthesis GB of data

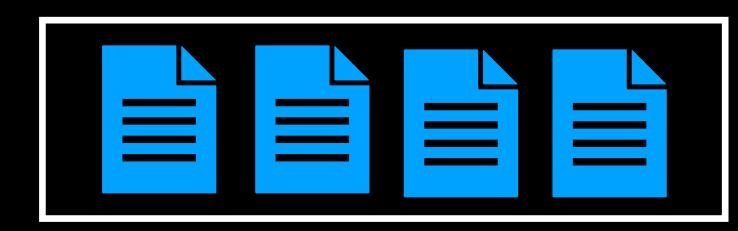




Pathology



Full care record: notes, codes and labs



Modeling: How can we model giant inputs?

Prediction

Atlas: Multi-Scale Attention Improves Long Context Image Modeling

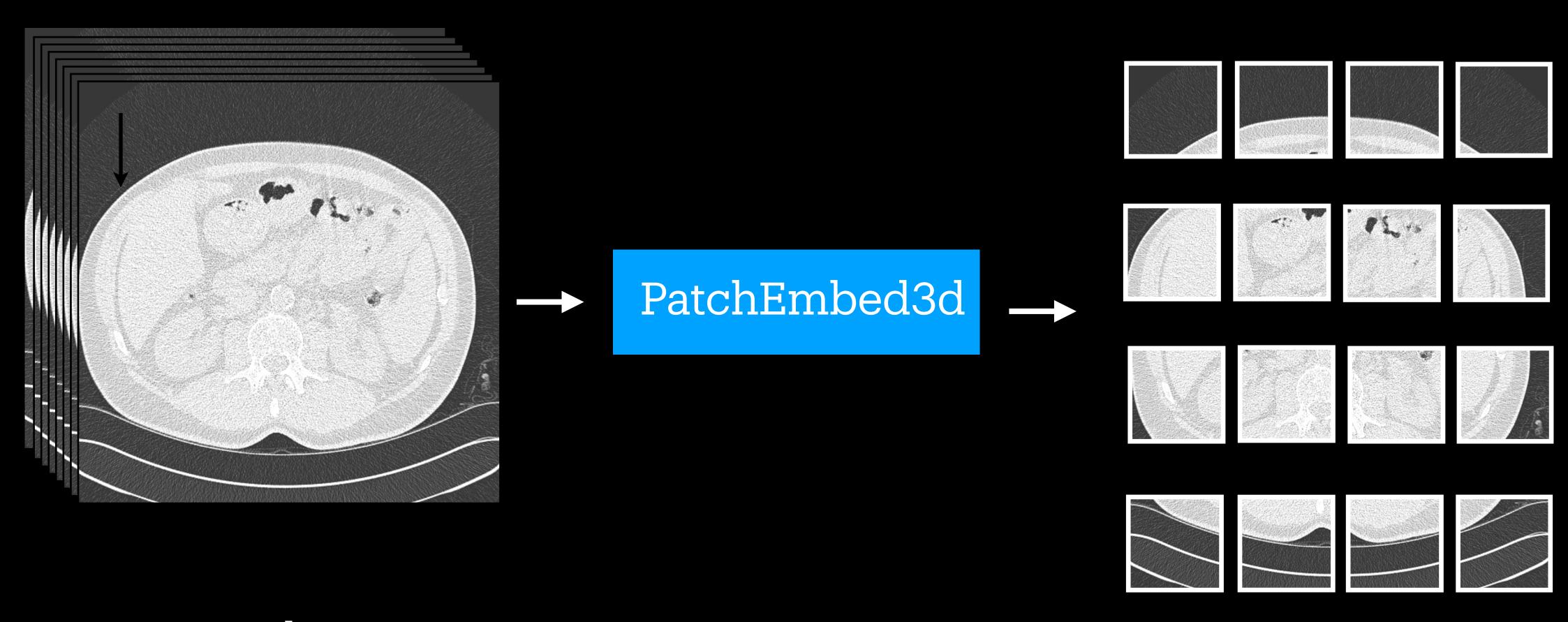
Kumar Krishna Agrawal * 1 † Long Lian * 1 Longchao Liu 1 Natalia Harguindeguy 1 2 Boyi Li 1 Alexander Bick 3 Maggie Chung 2 Trevor Darrell 1 Adam Yala 1 2

Led by:

Krishna Agrawal

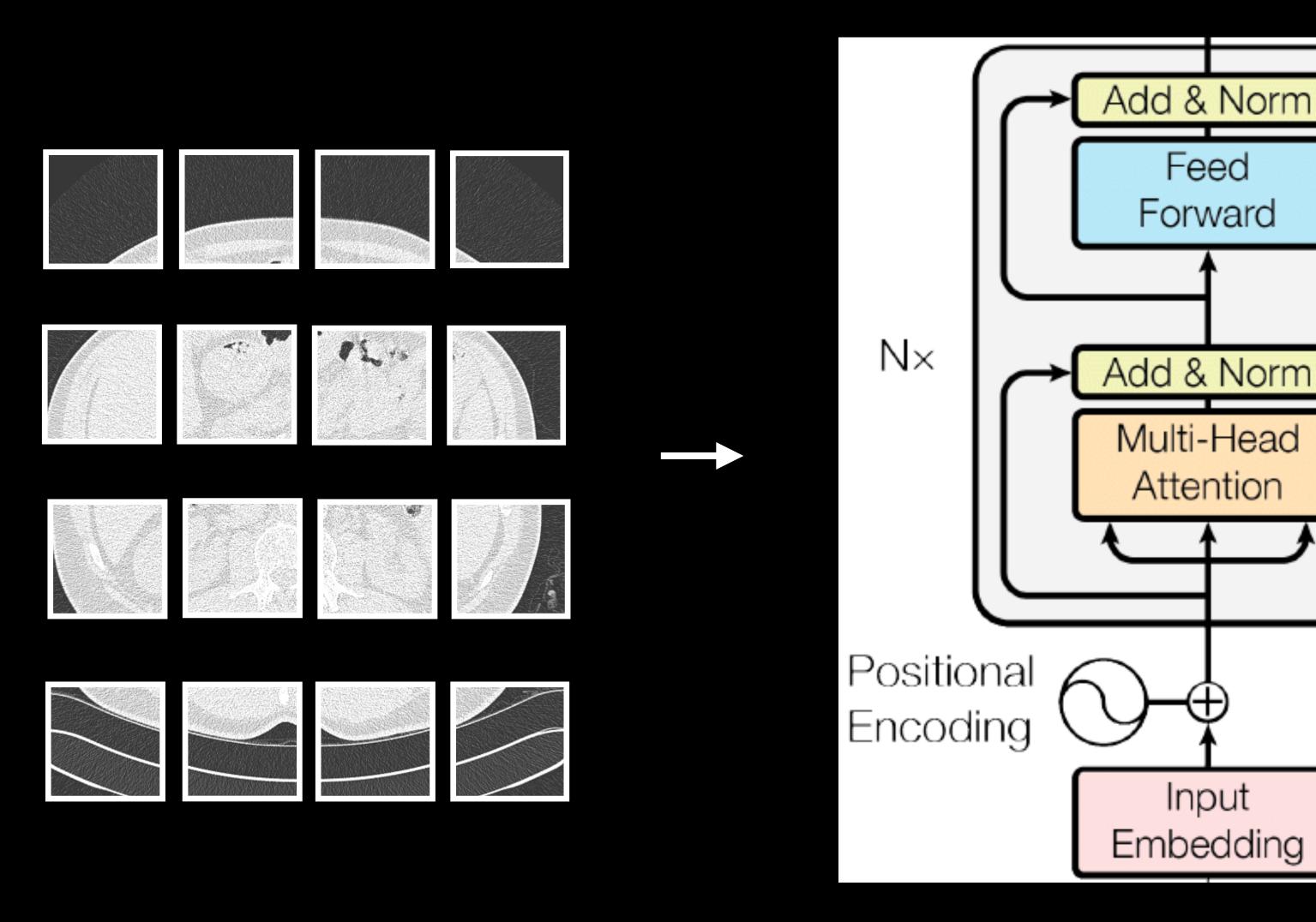
Tony Lian

Prelim: Images as sequences of tokens



input resolution 200x512x512 patch-size 2x4x4 sequence-length 1.6M tokens

Prelim: Transformers and Self-attention

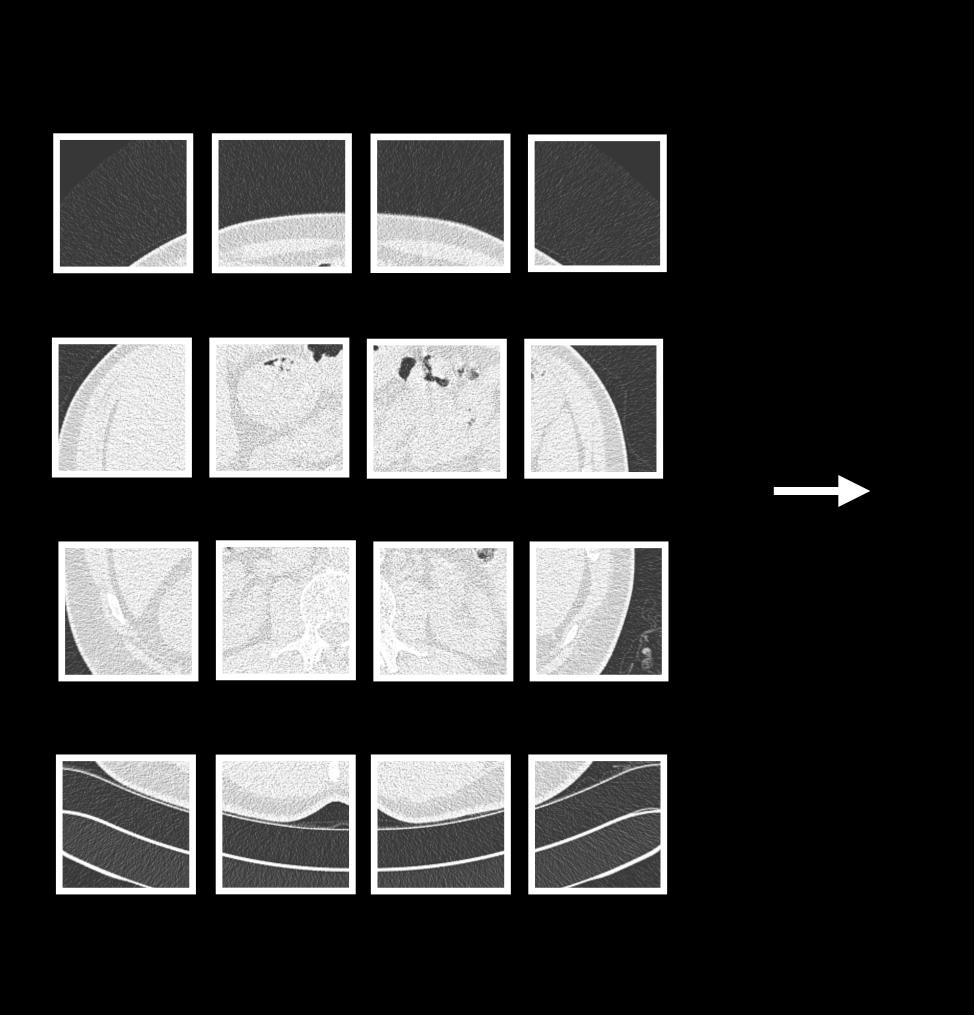


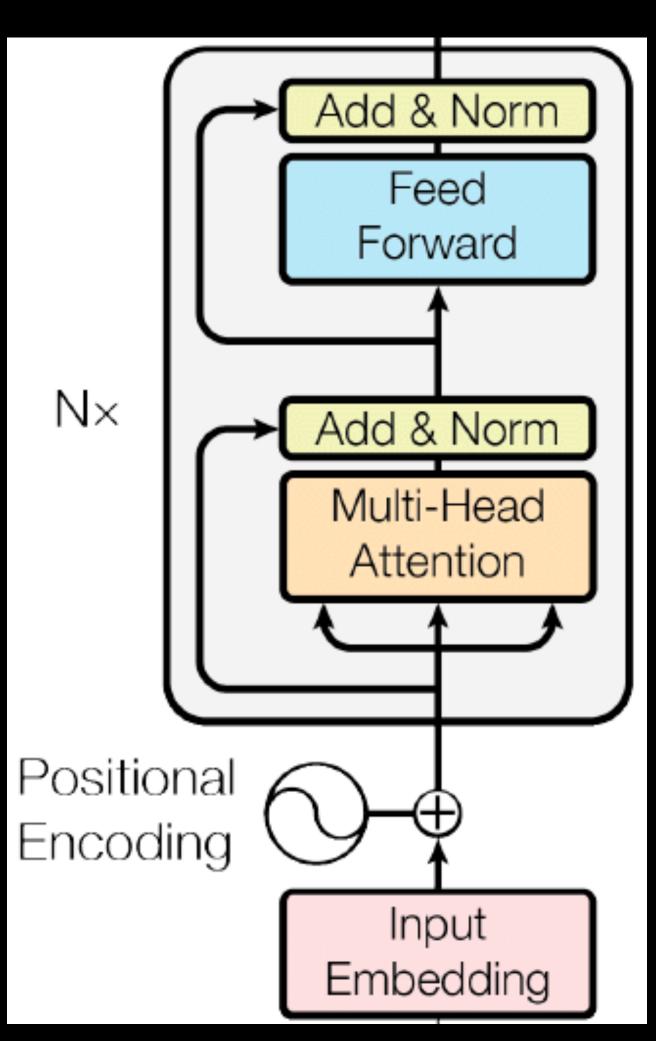
Compute cost: O(n^2)

Maximum path length: O(1)

CT N ImageNet N 1,600,000 tokens 256 tokens

Prelim: Transformers and Self-attention





Compute cost: O(n^2)

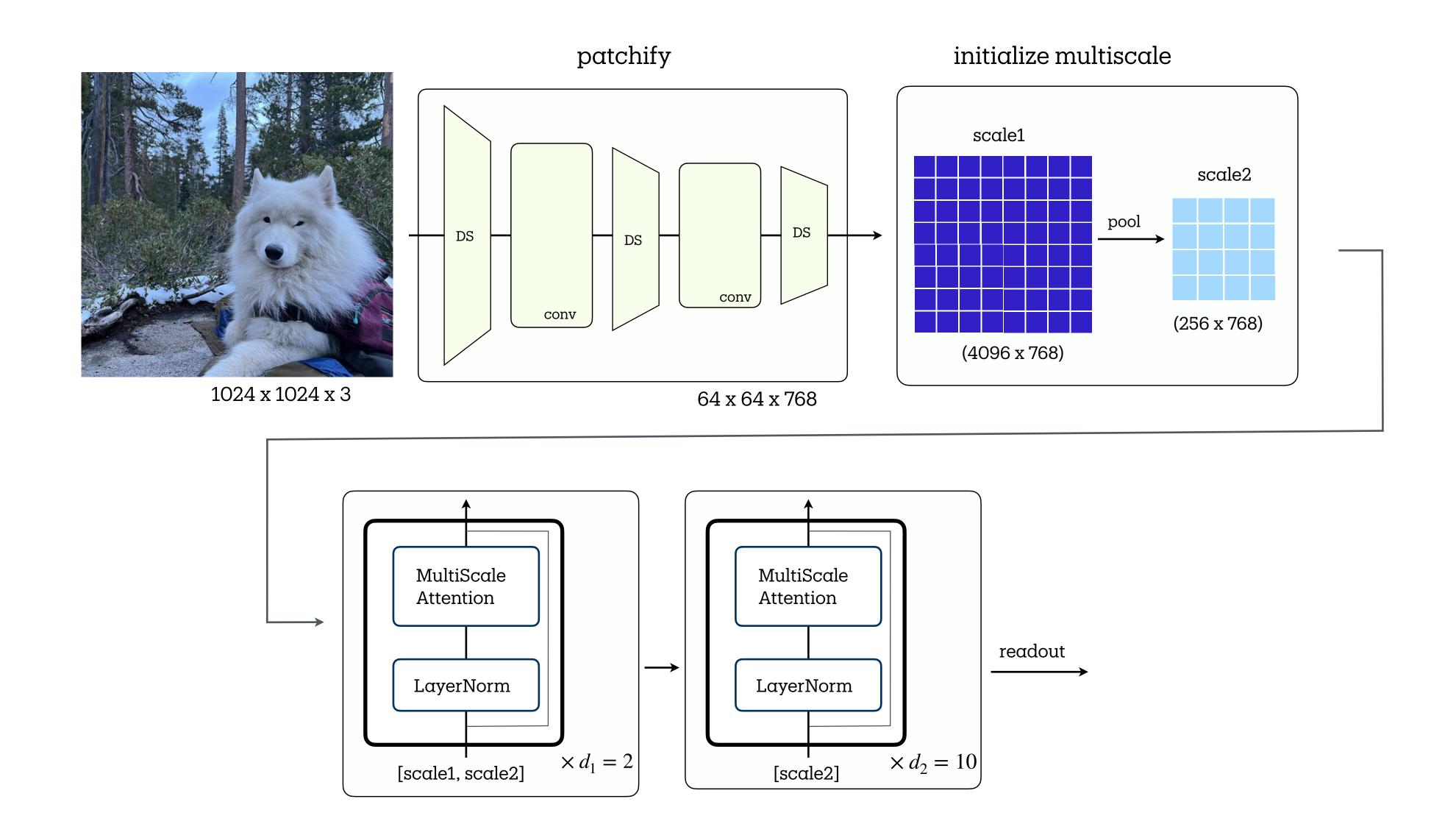
Maximum path length: O(1)

Problem: Intractable at our scale!

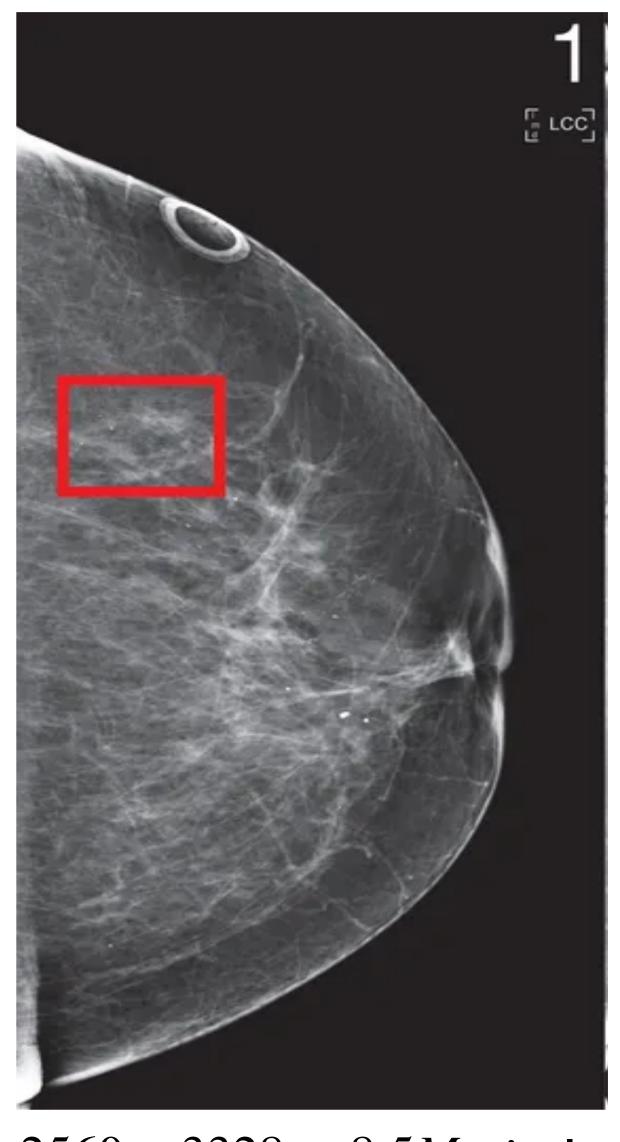
62,000 x bigger than ImageNet
3.9 billion times
more compute expensive

CT N ImageNet N 1,600,000 tokens 256 tokens

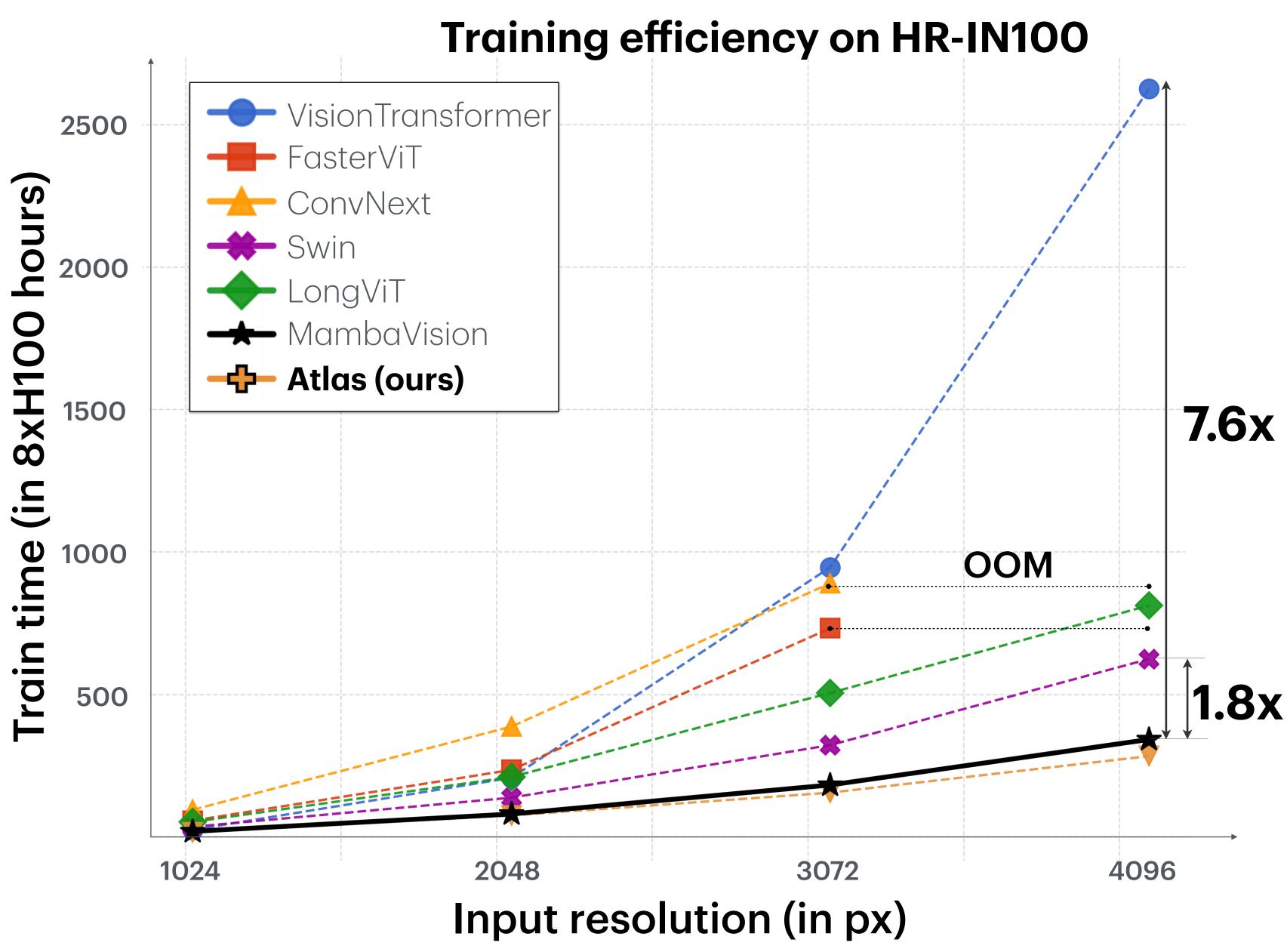
Atlas: Overview



Computational Efficiency

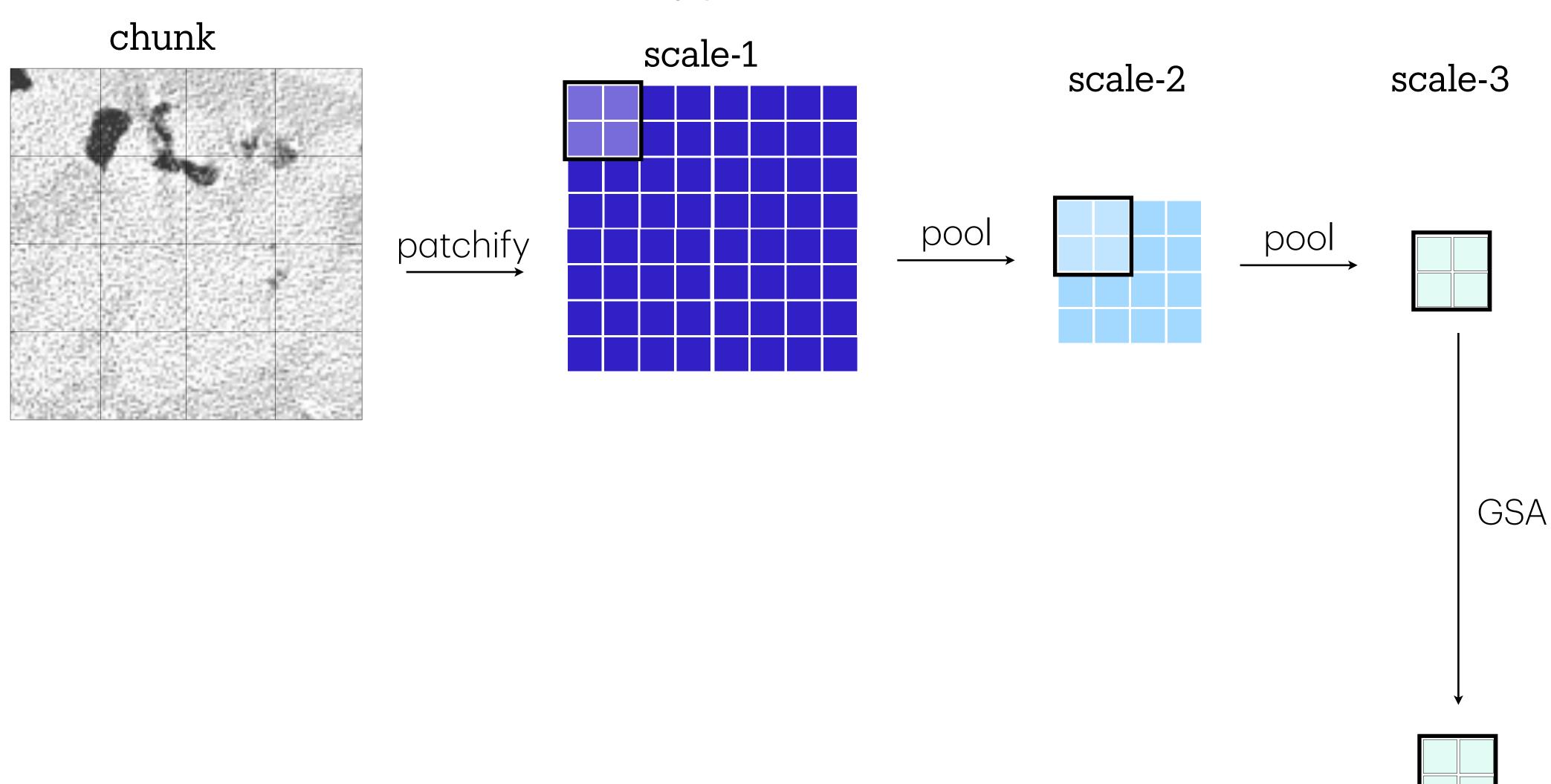


 $2560 \times 3328 \sim 8.5M$ pixels

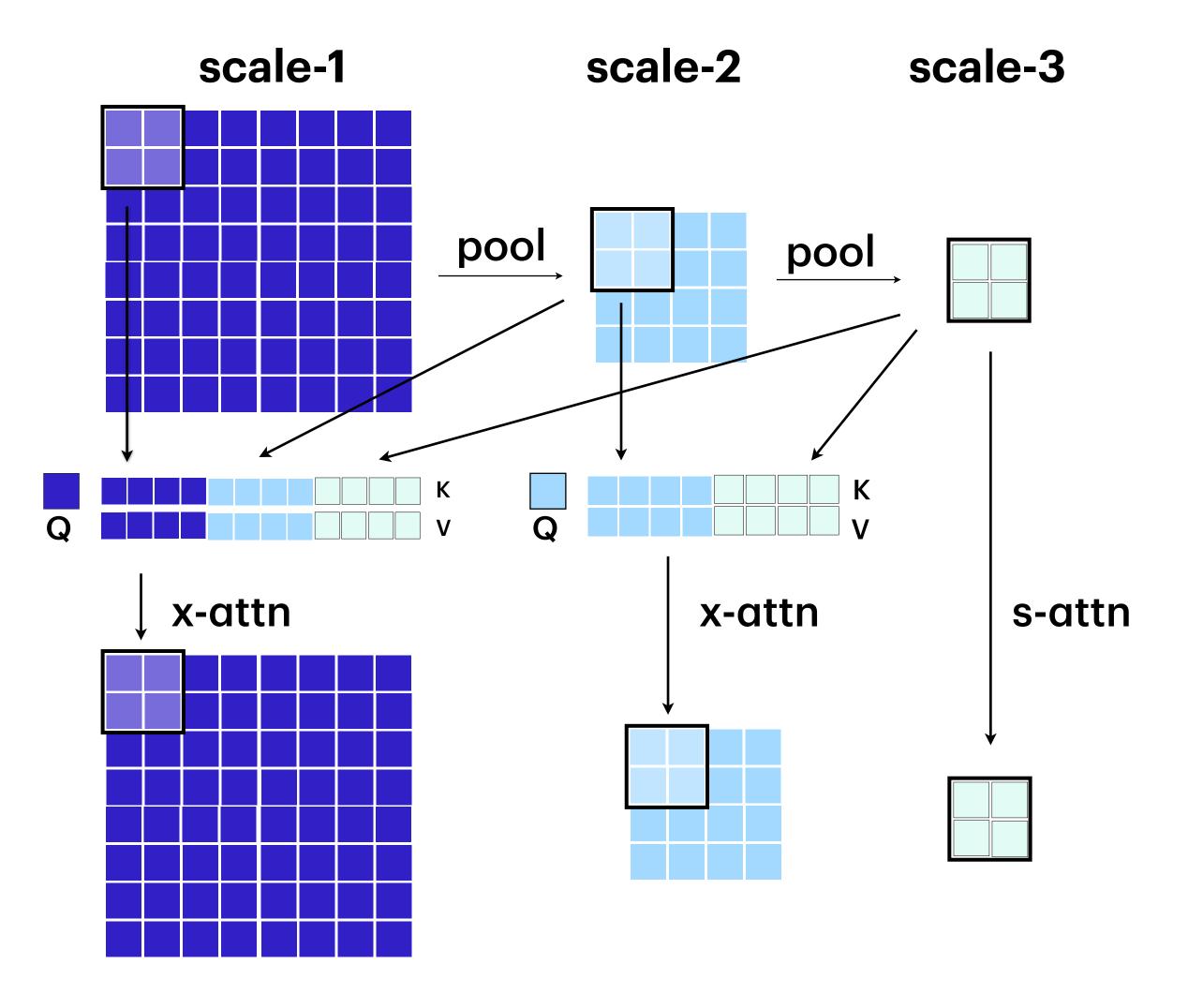


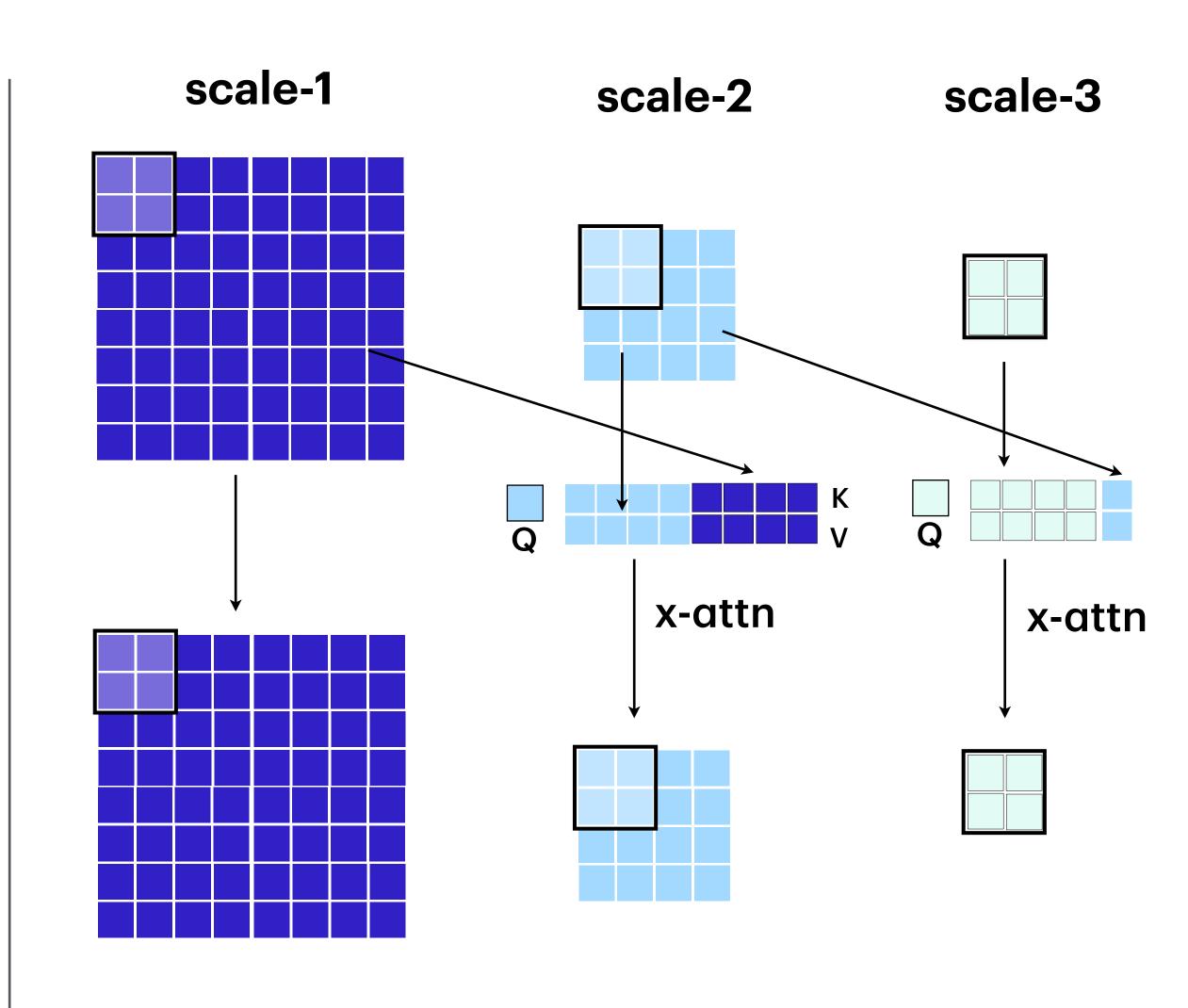
Atlas

fix window-size (K)=2x2



Atlas with Multi-Scale Attention



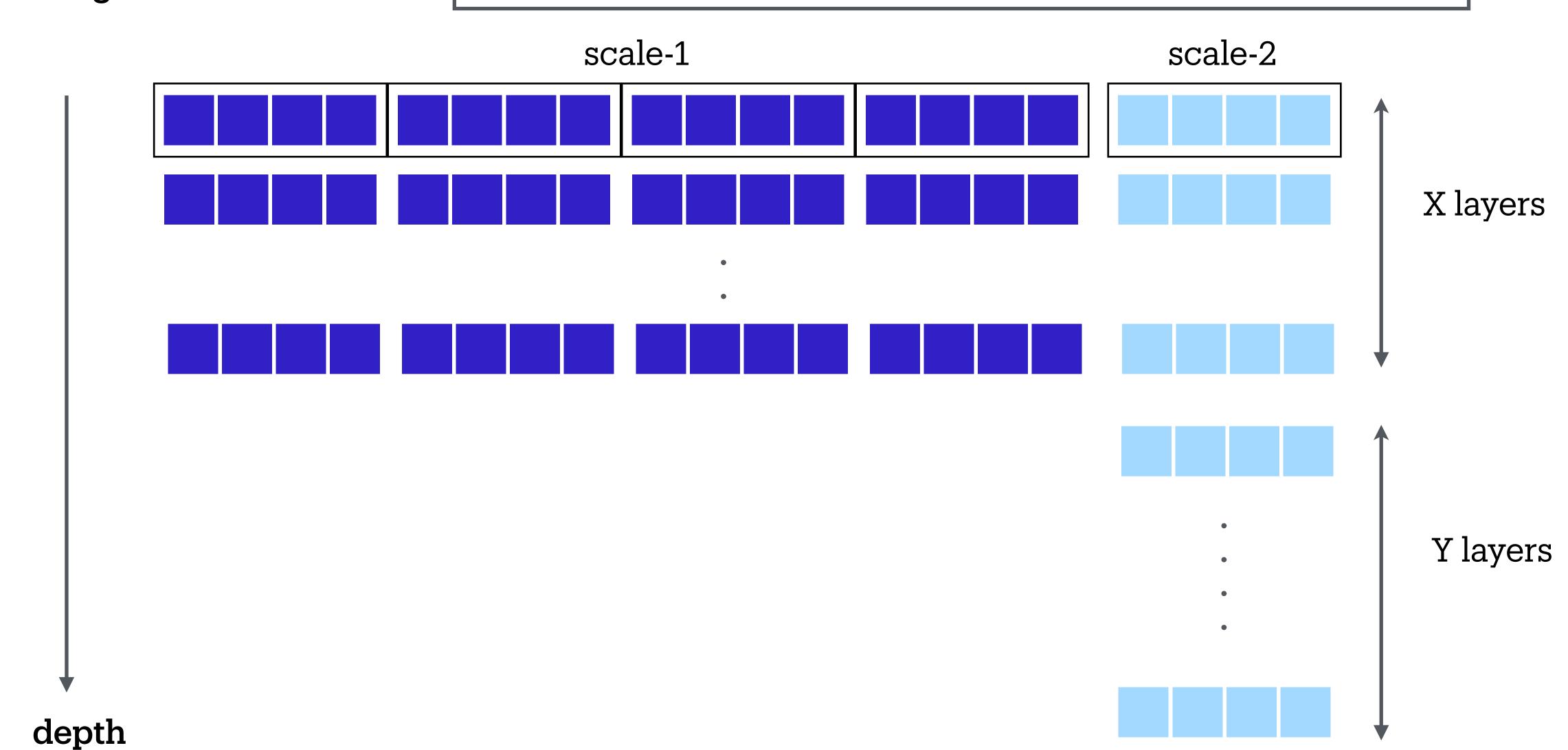


bottom-up multi-scale communication pathways

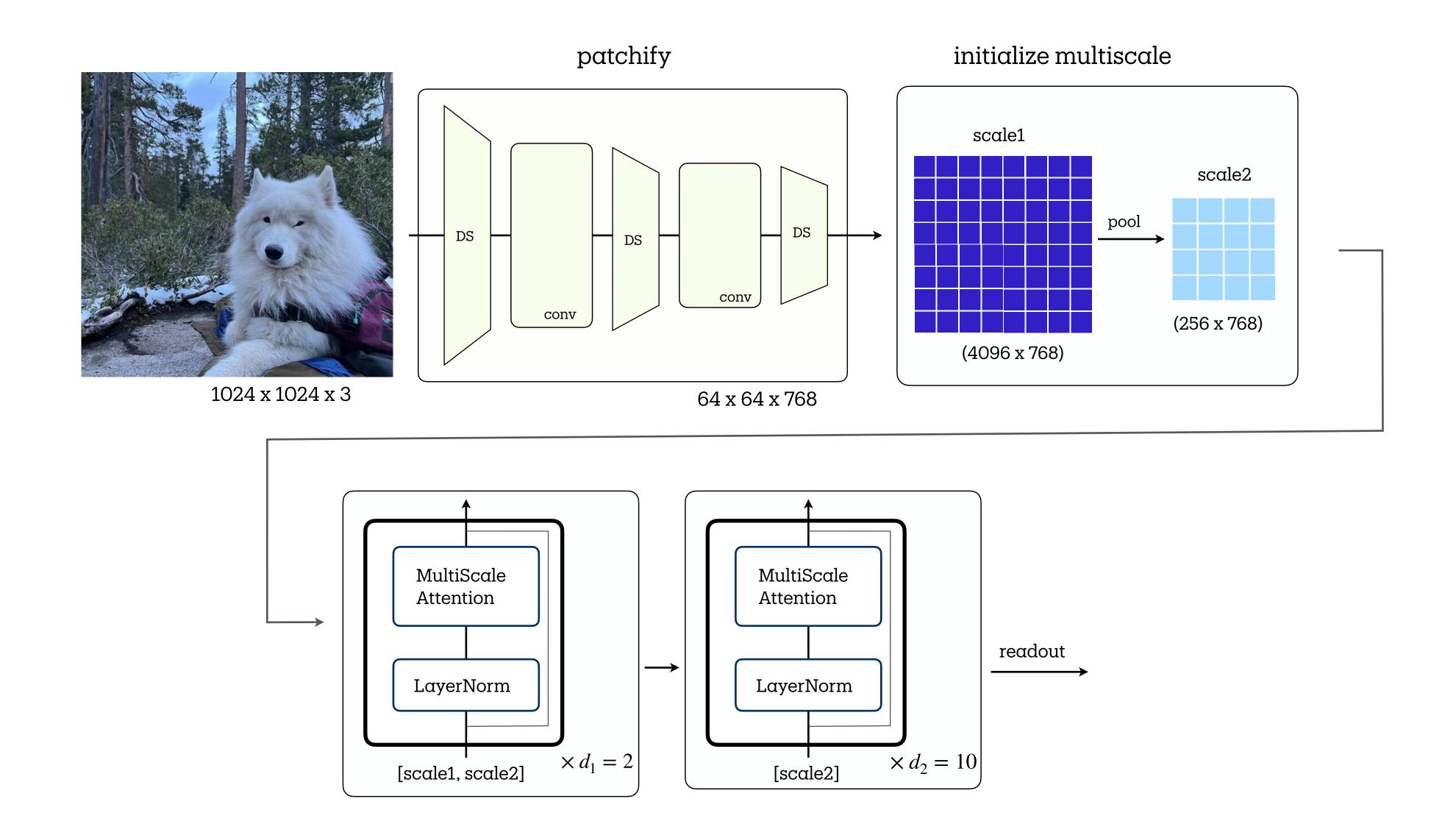
Atlas Architecture

configuration: dX-dY

key idea: drop early scales progressively



Atlas: Overview

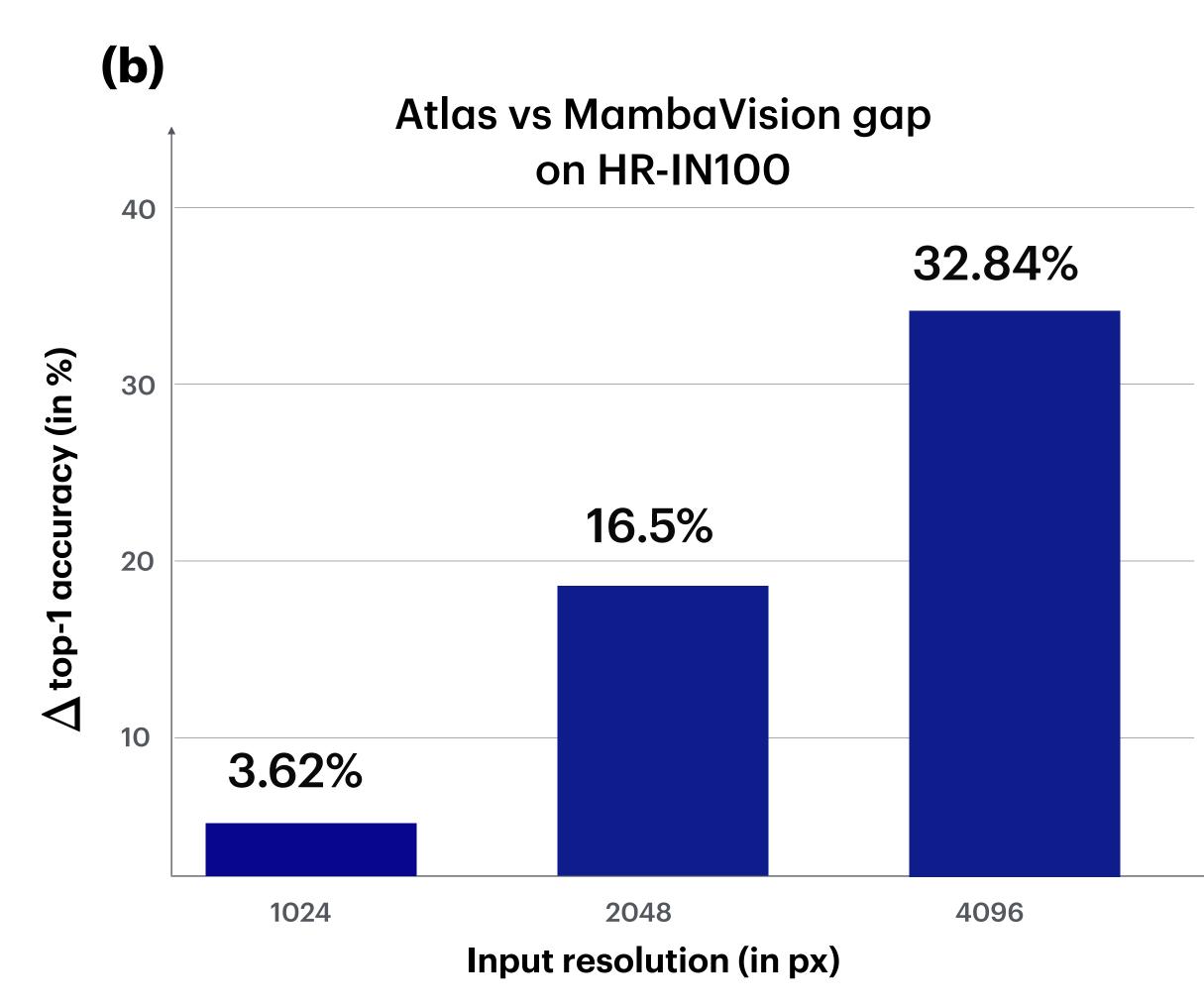


Performance Comparison

(a)

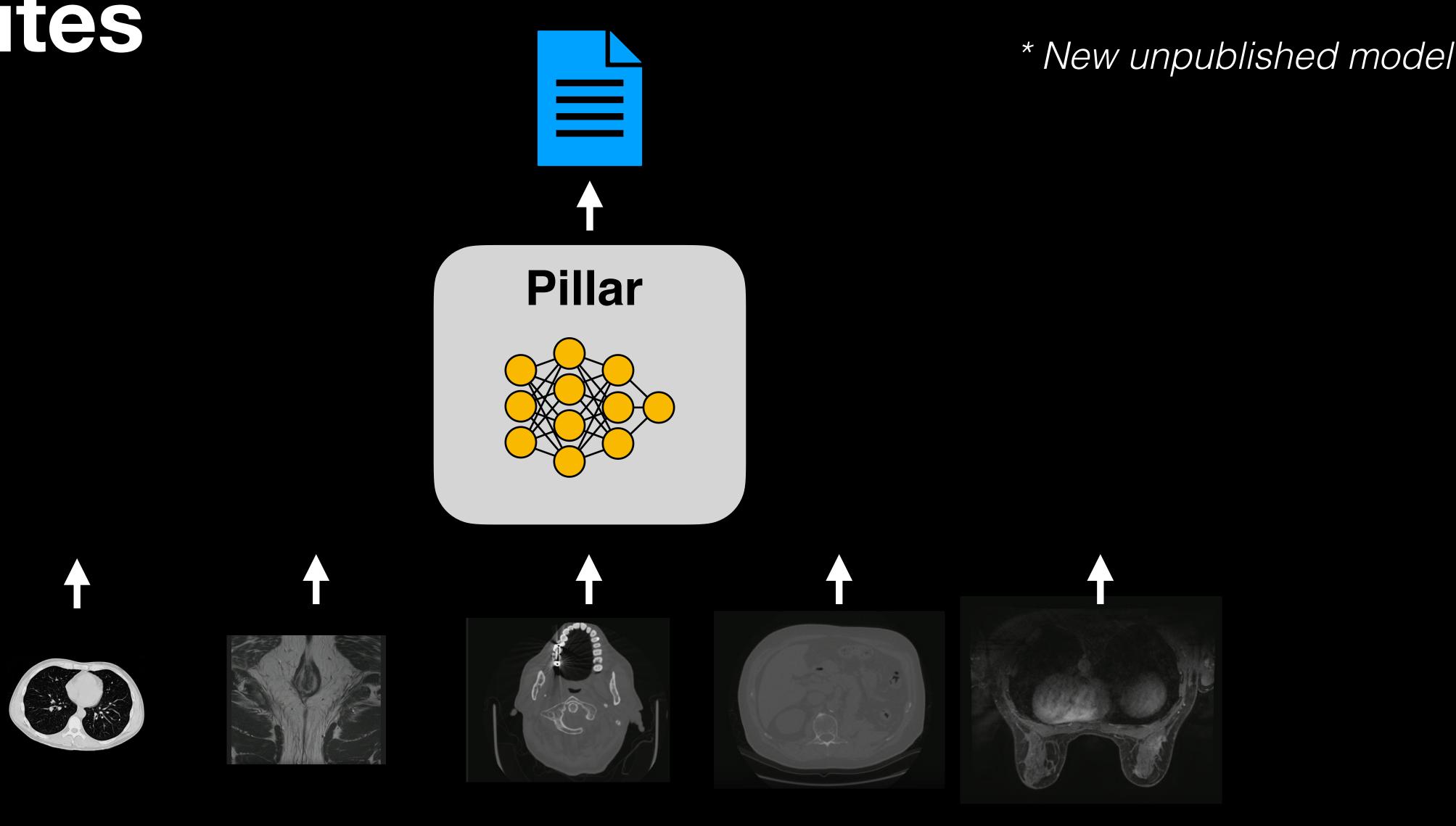
Arch	itecture	Runtime (hr) ↓	Relative speedup ↓	Top-1 Acc. (%) ↑
Transformer	ViT-B	26.77	1.15x	90.66
	Swin-B	37.25	1.6x	90.89
	FasterViT-4	68.31	$2.9 \times$	83.66
	LongViT-B	52.23	$2.2 \times$	86.08
Convolutional	ConvNext-B	100.11	4.3×	91.92
Mamba	MambaVision-B	22.69	0.98×	84.86
Multi-Scale	Atlas-B	23.12	1.00×	91.04

Comparison of vision backbones on 1024x1024 image resolution on the HR-IN100 benchmark. Each model is evaluated on runtime (in hours), relative speed compared to Atlas, and Top-1 accuracy (in %). All models are base scale and were trained for 320 epochs until convergence on single 8 × H100 GPU node.



Pillar: Unified pre-training across 5

modalites

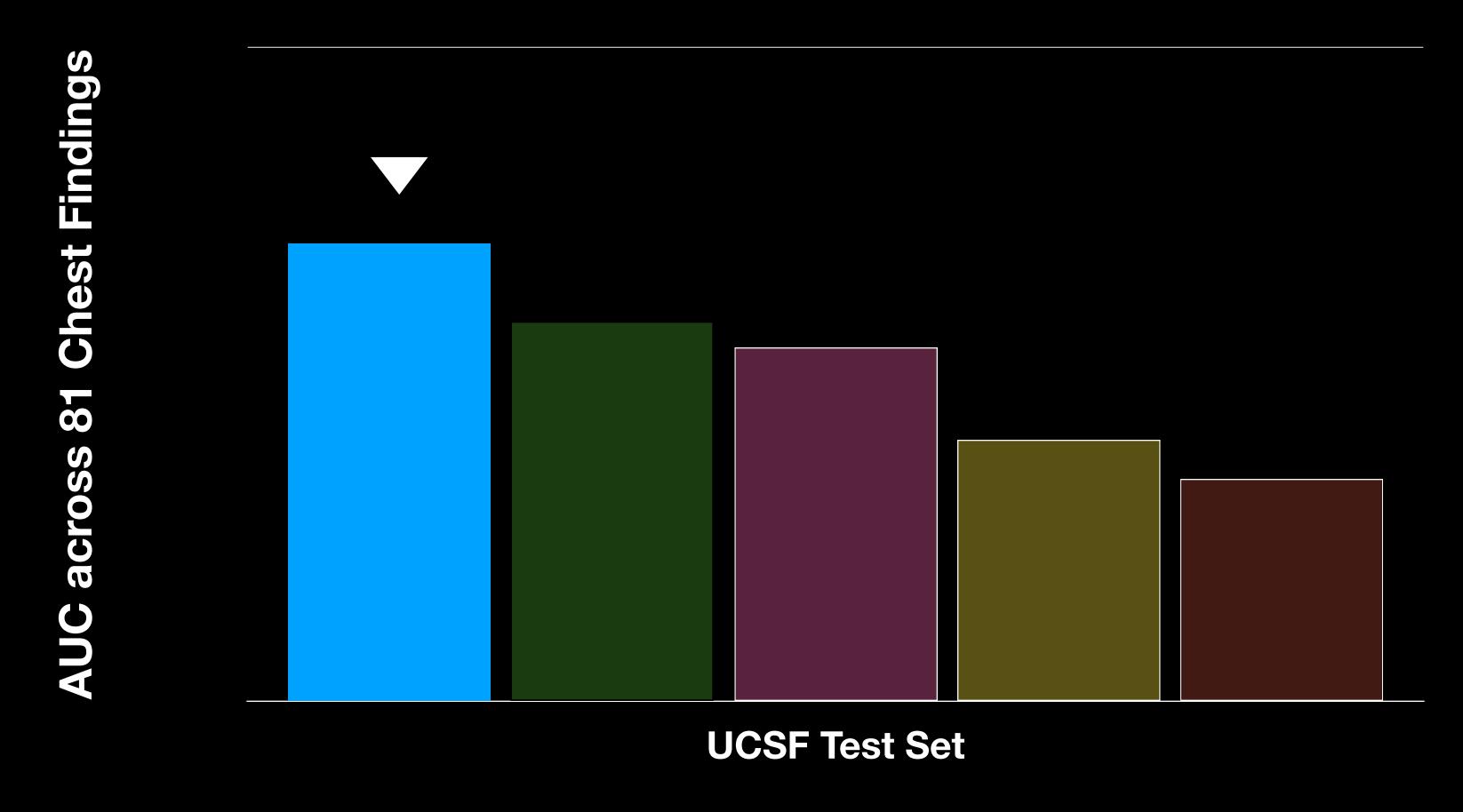


Leaps in performance 80+ abdomen CT findings

- Pillar (Ours Berkeley/UCSF)
- MI2 (Microsoft)
- CT-FM (Harvard)

MedGemma (Google)

Merlin (Stanford)



Today: Towards Al-driven care

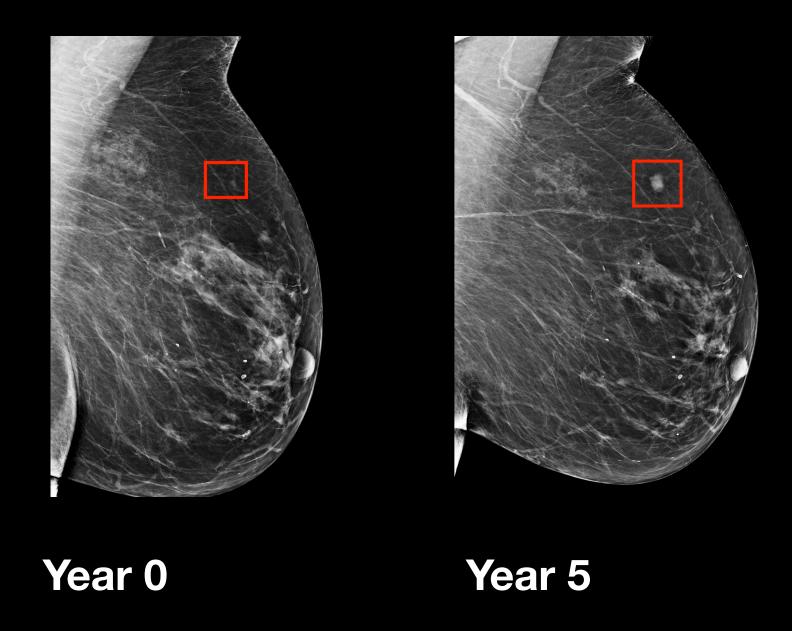
Prediction Control Translation

Today: Towards Al-driven care

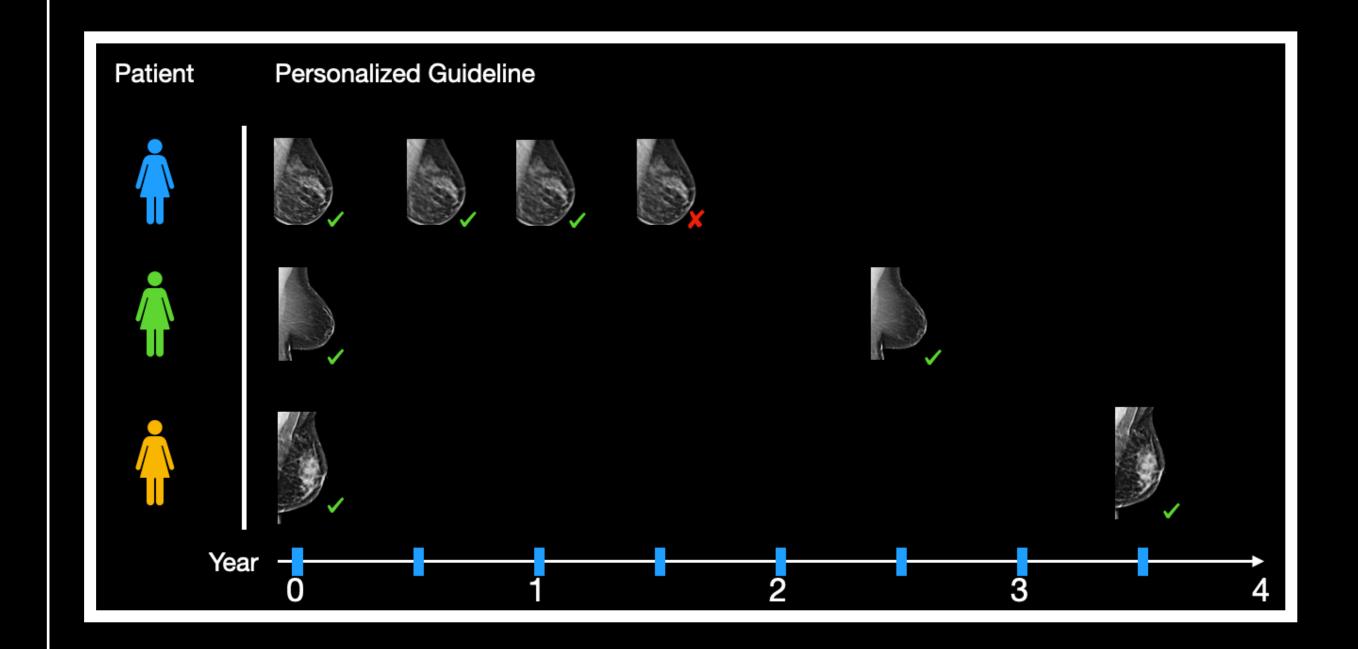
Control

How to catch cancer earlier

Predict Cancer Risk

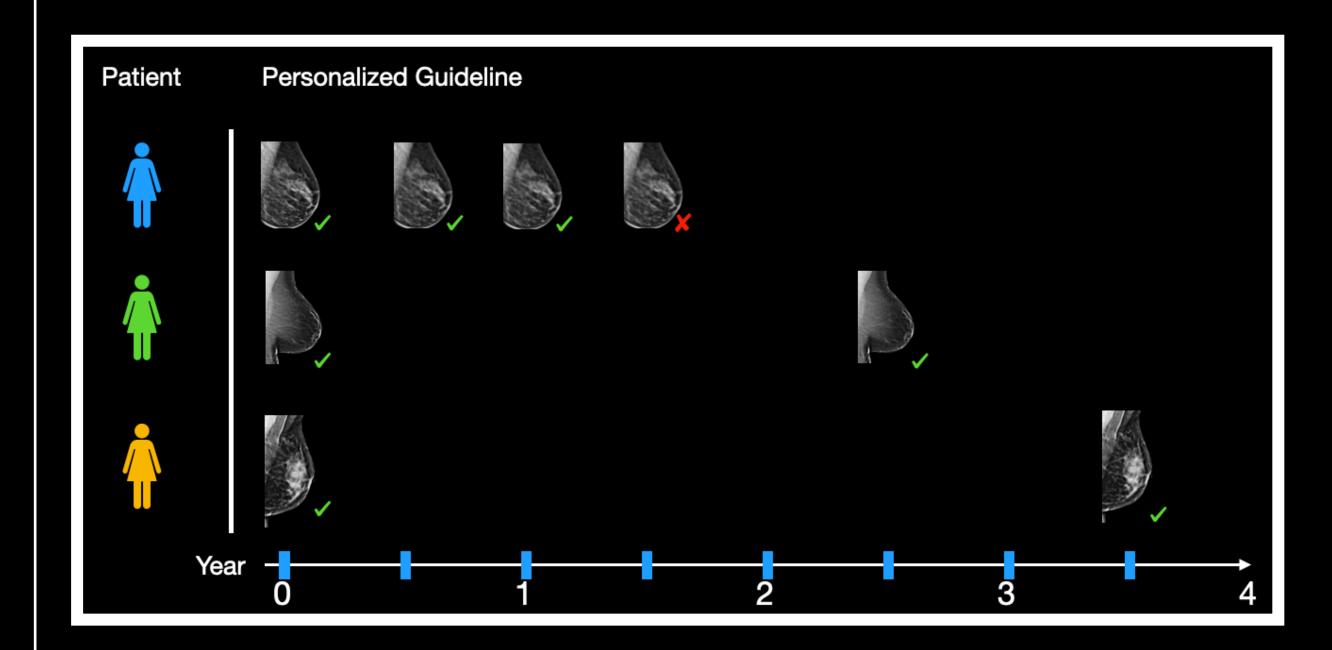


Create personalized screening policy

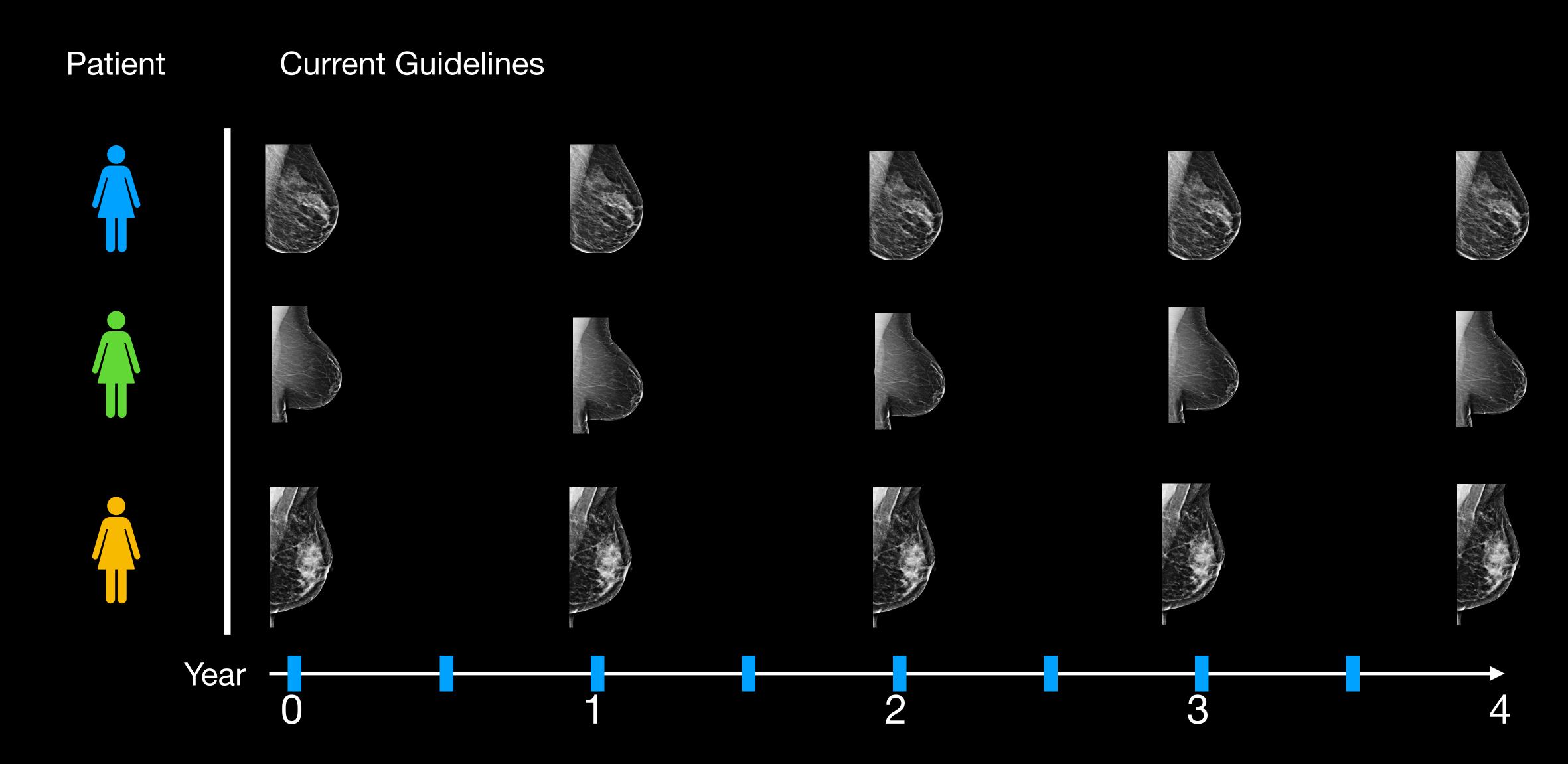


How to catch cancer earlier

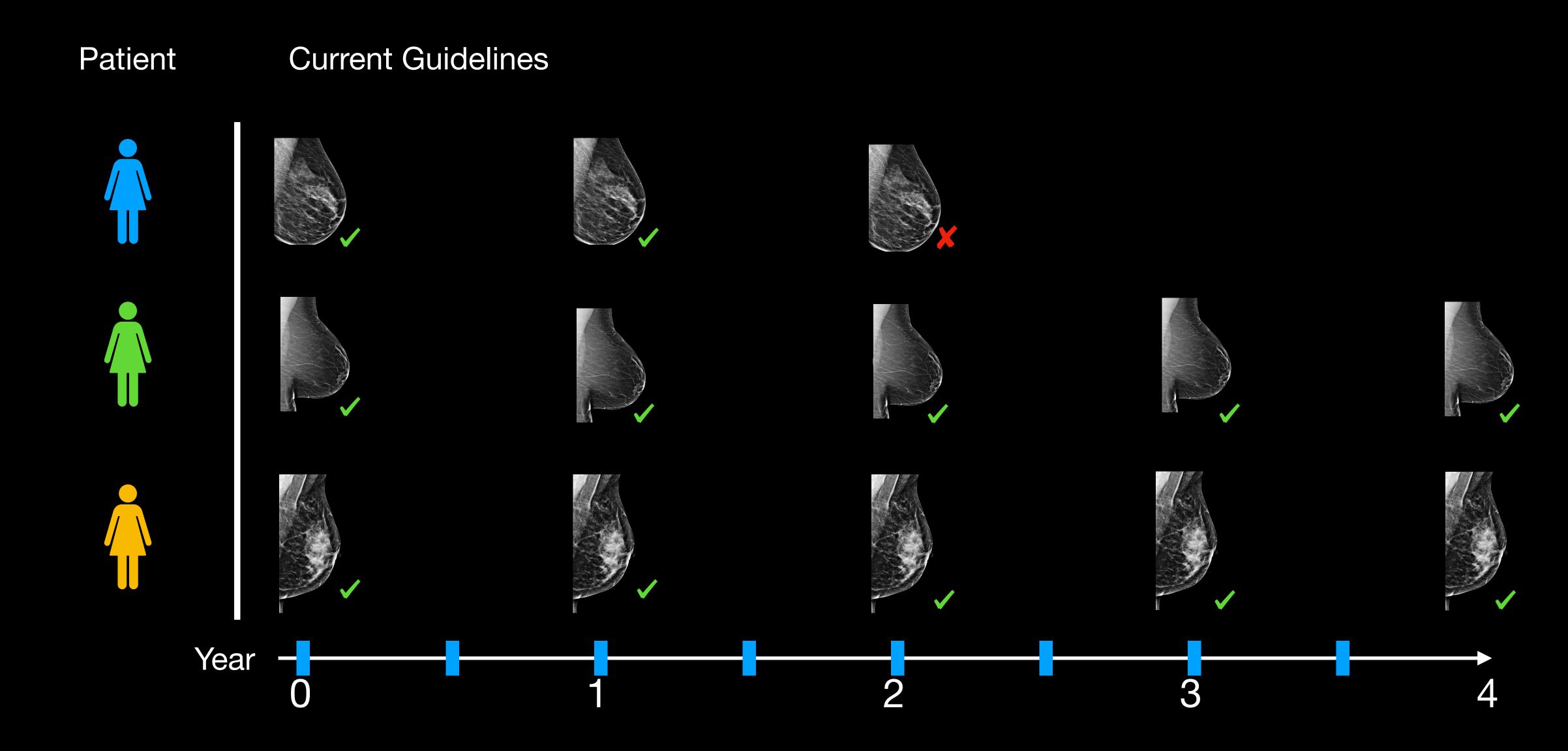
Create personalized screening policy



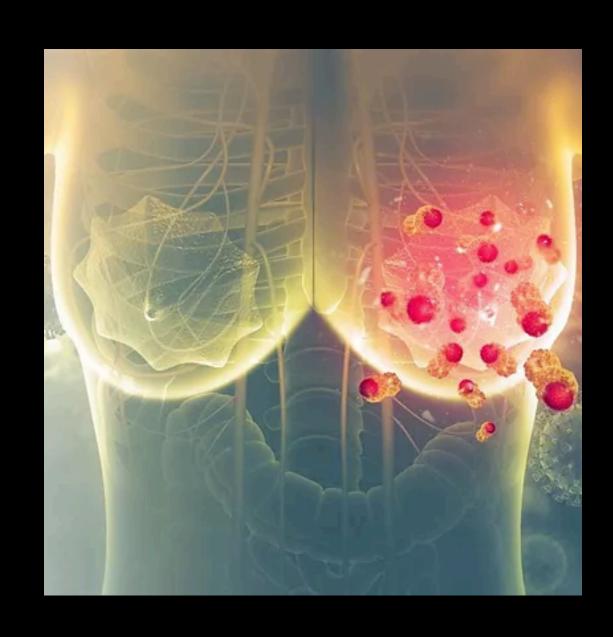
Screening today



Same screening, different outcomes



Challenges in current screening

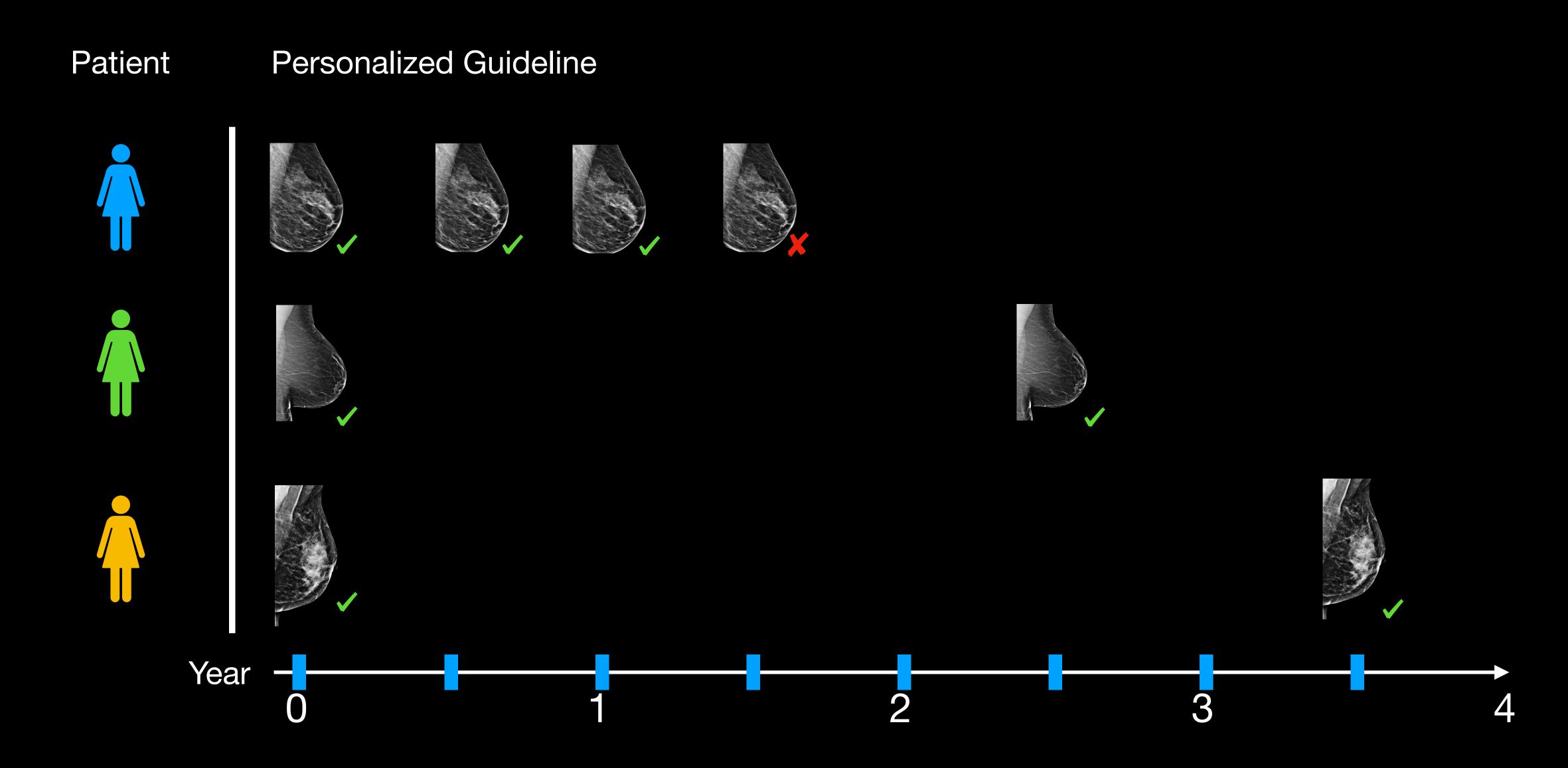


Late Detection

Over Screening

Health Disparities

Tailor screening regime to patient need



Current processes for policy design

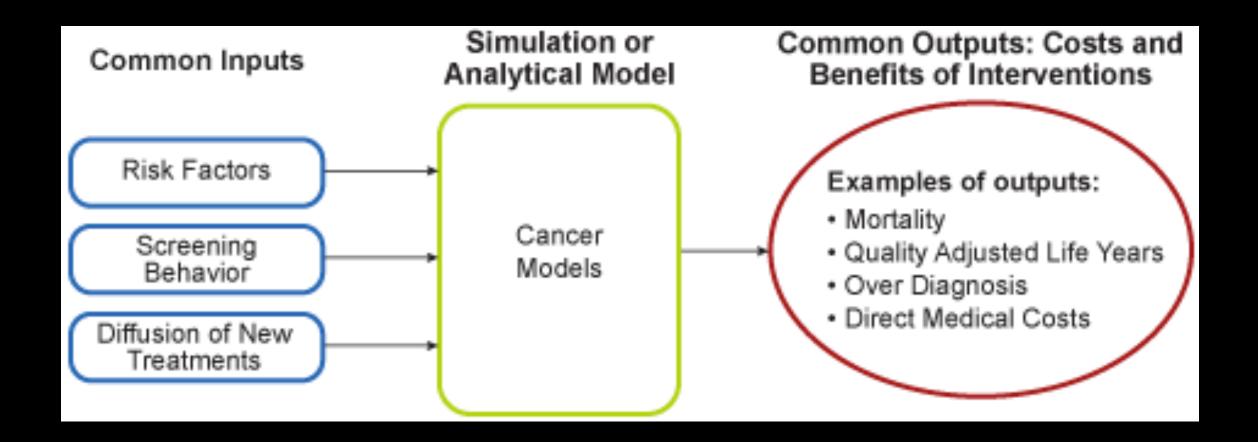
Expert panel meetings by physician organizations

Most meet every five years

Multiple conflicting one-size fits all guidelines

No explicit validation across populations. Health disparities grow

Modeling for clinical guidelines



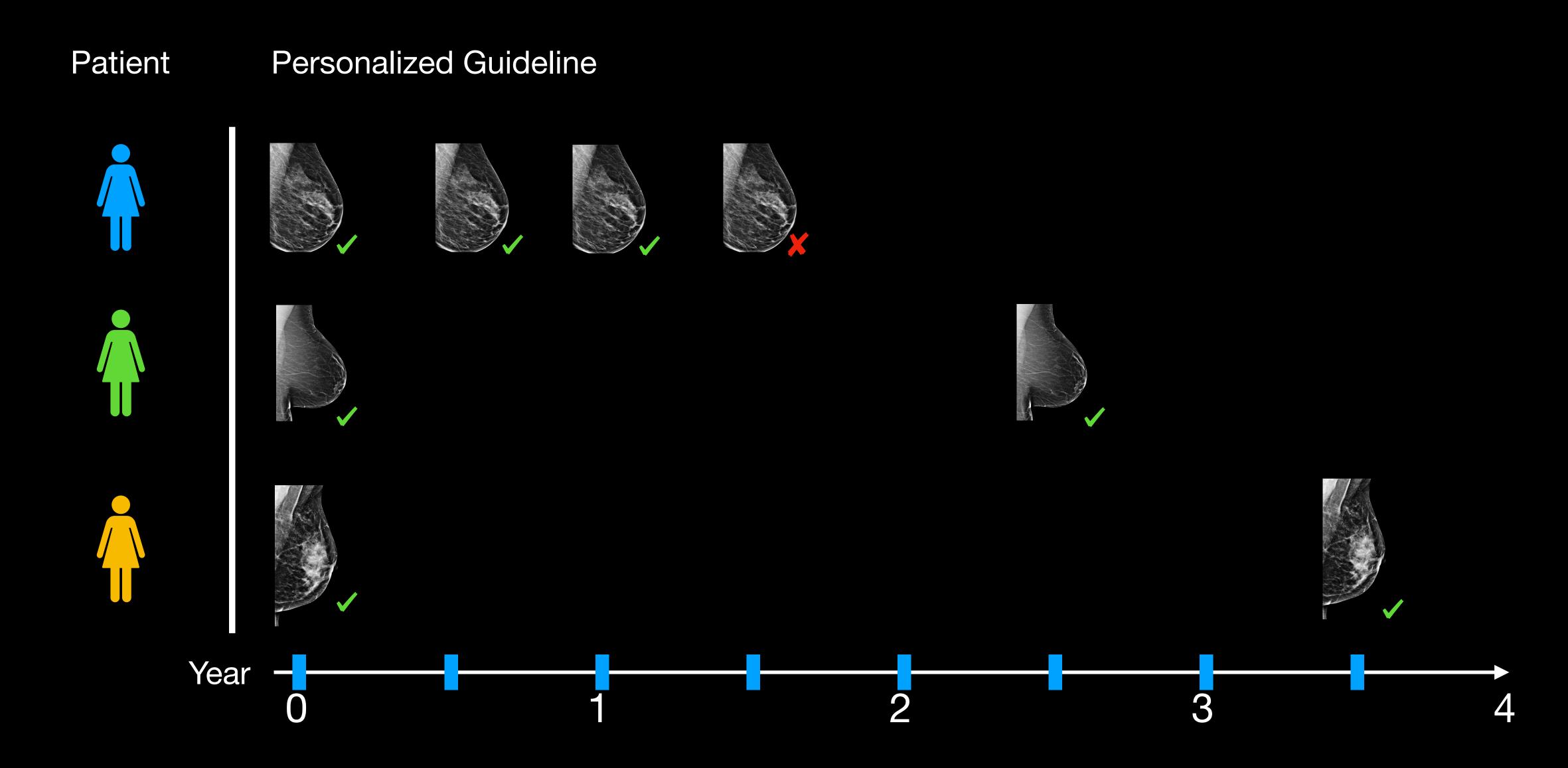
Assume full probabilistic models of disease

Simulate hypothetical patients under screening strategies

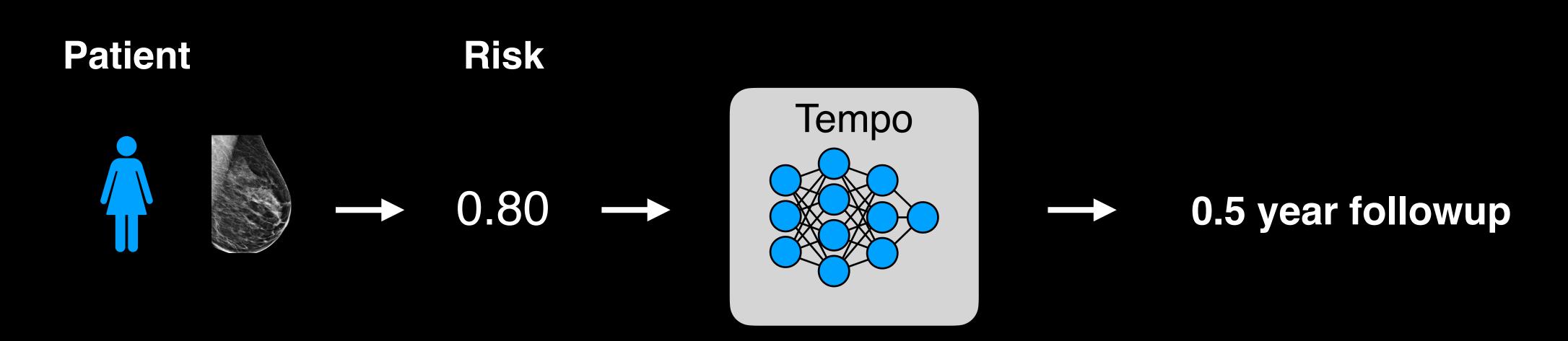
Suggest "correct" trade-off

Cannot incorporate new risk models or evaluated on real patients

Tailor screening regime to patient need



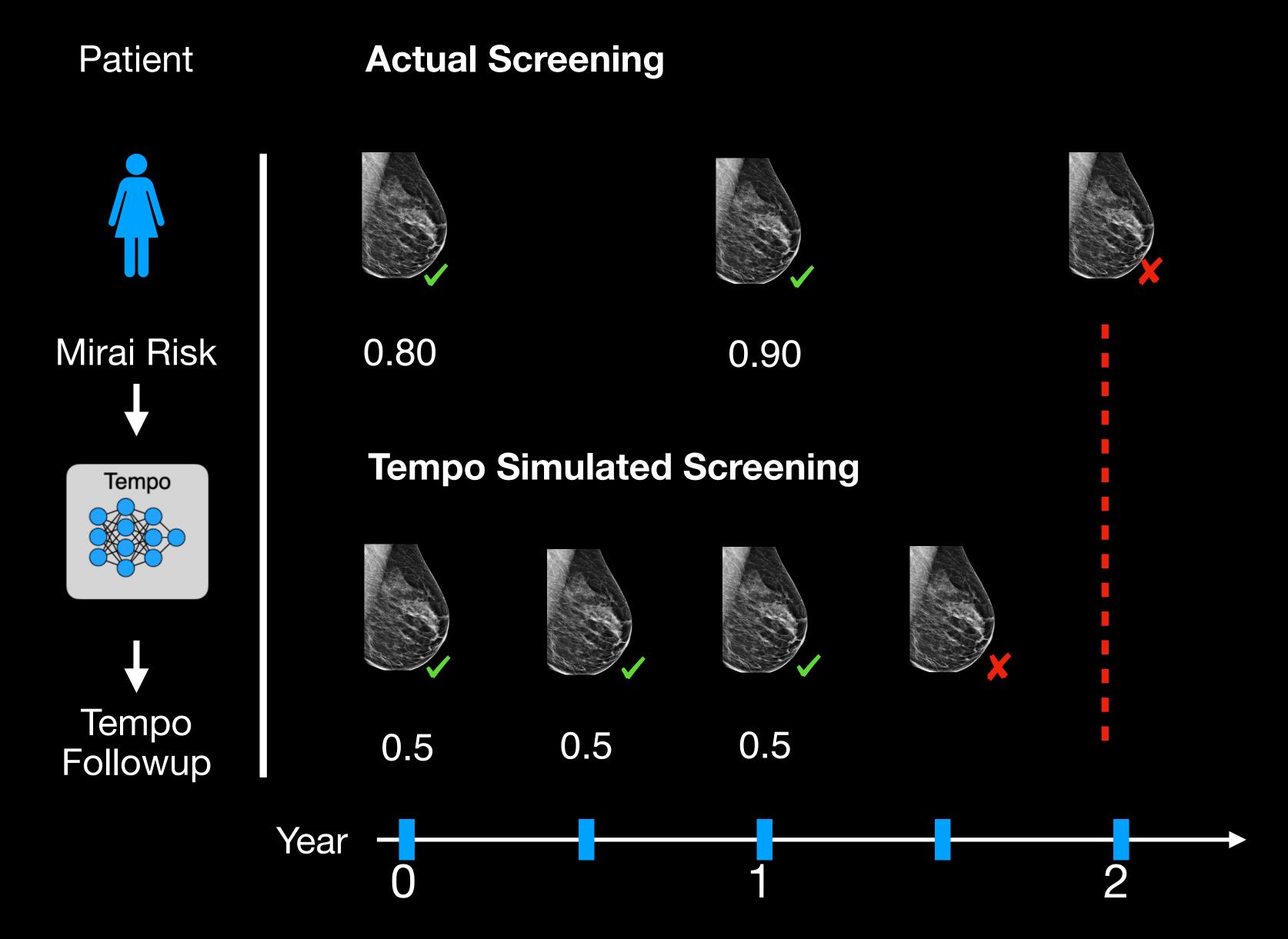
Policy Design as a Learning Task



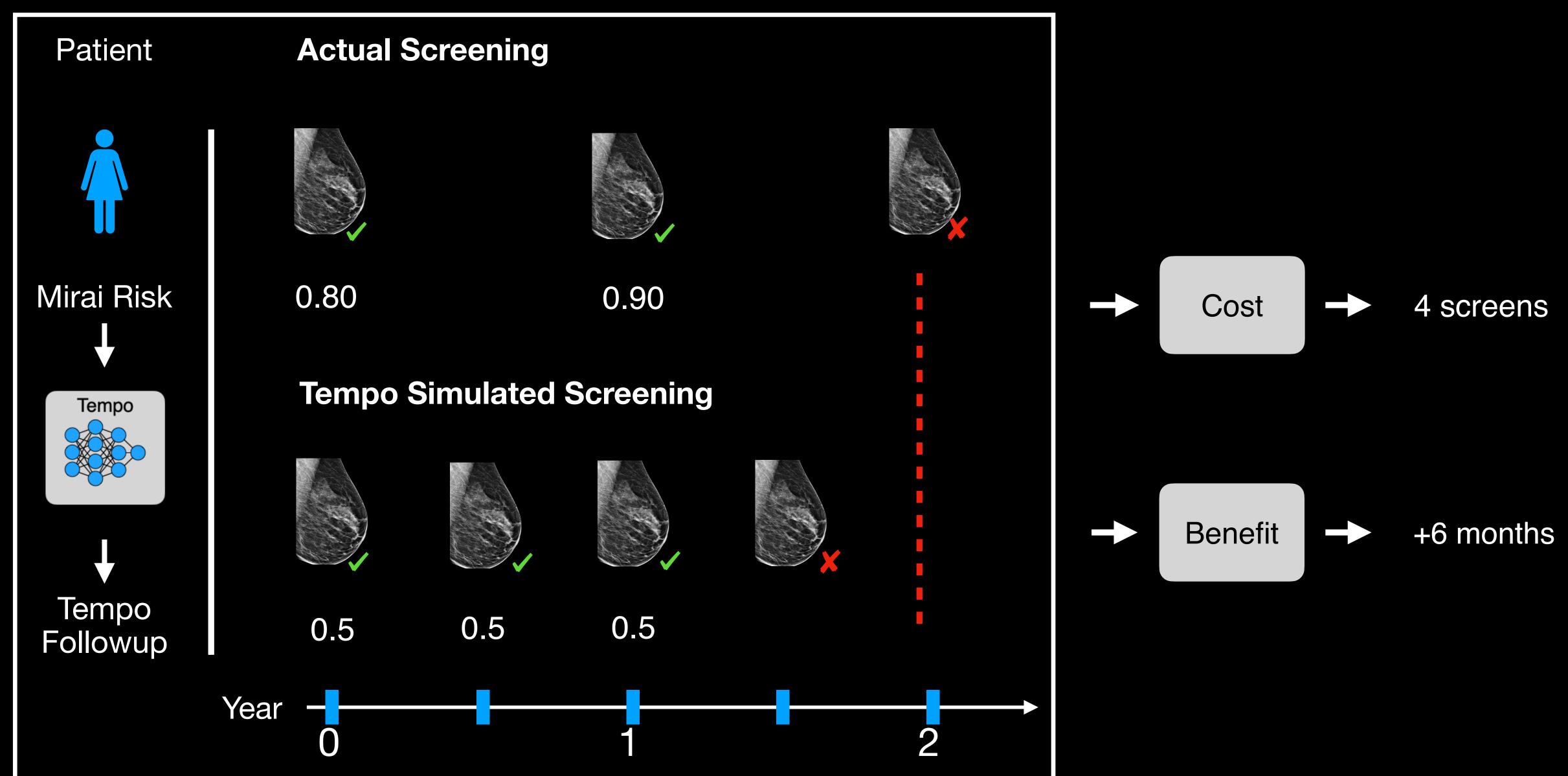
Reward = λ_1 Early Detection Benefit - λ_2 Screening Cost

Desiderata: Testable, Adaptive, Flexible

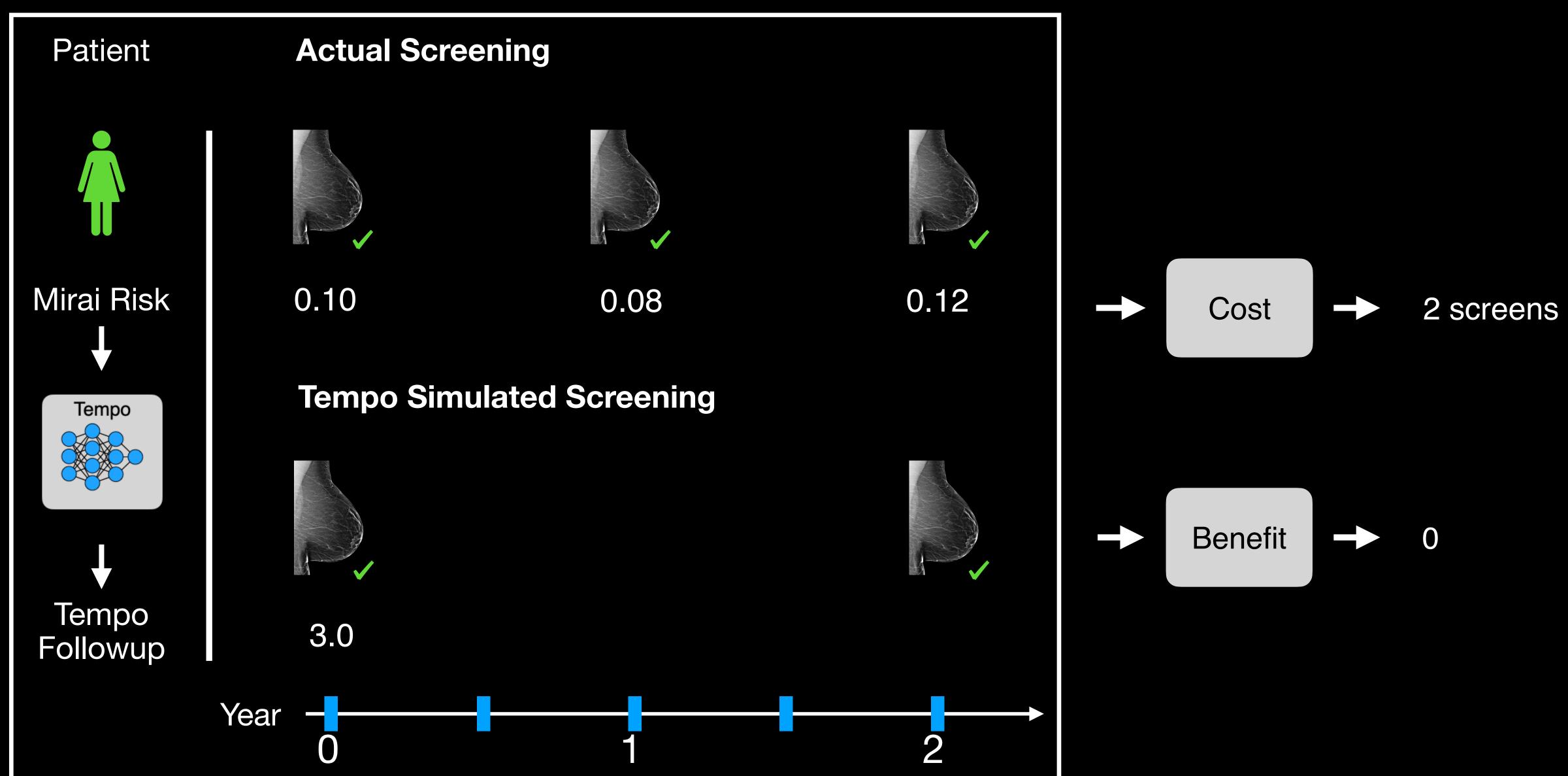
Simulate patient trajectories



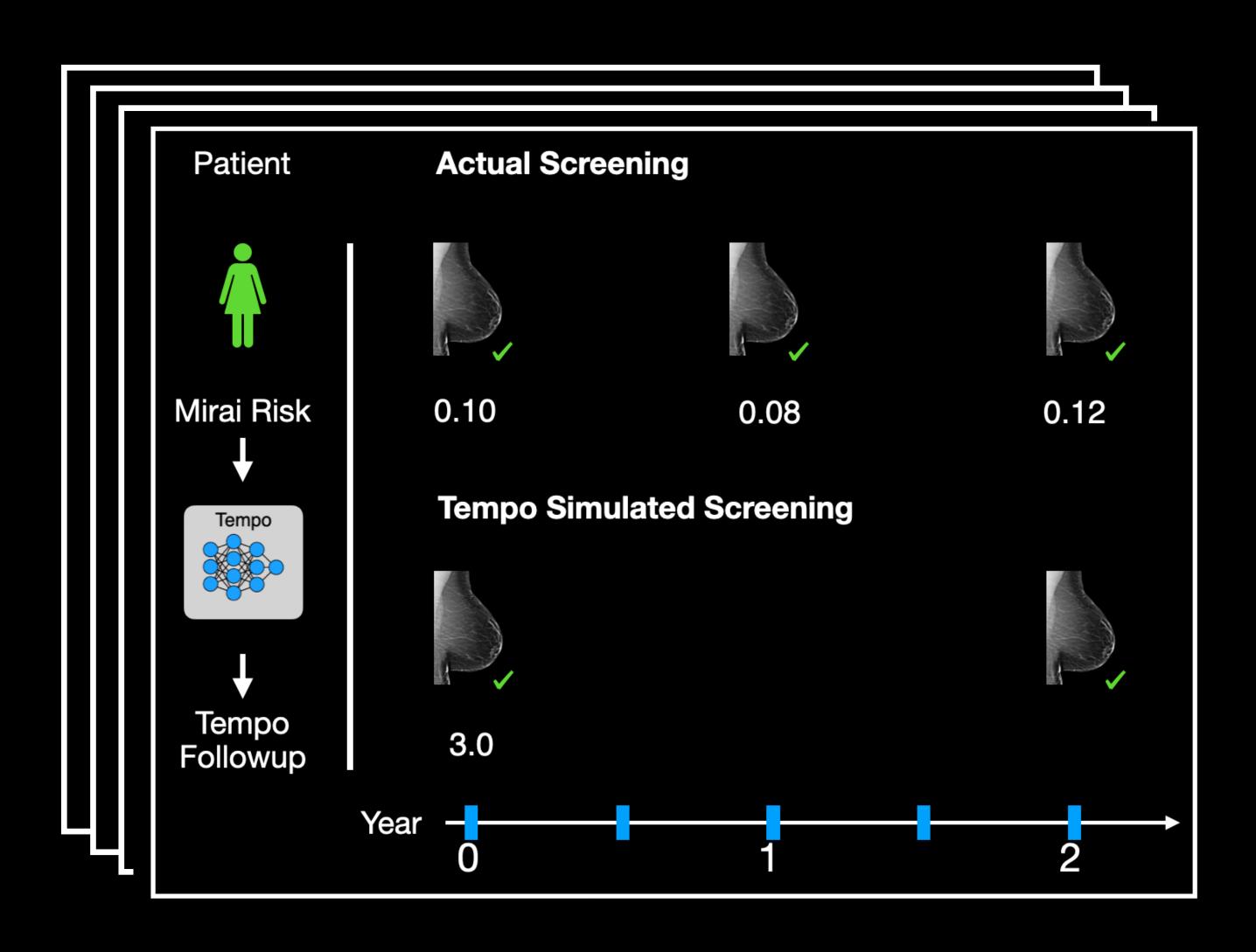
Evaluate individual impact

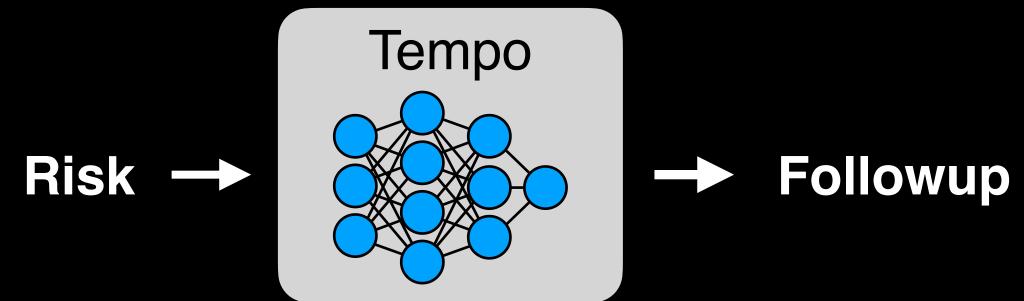


Evaluate individual impact

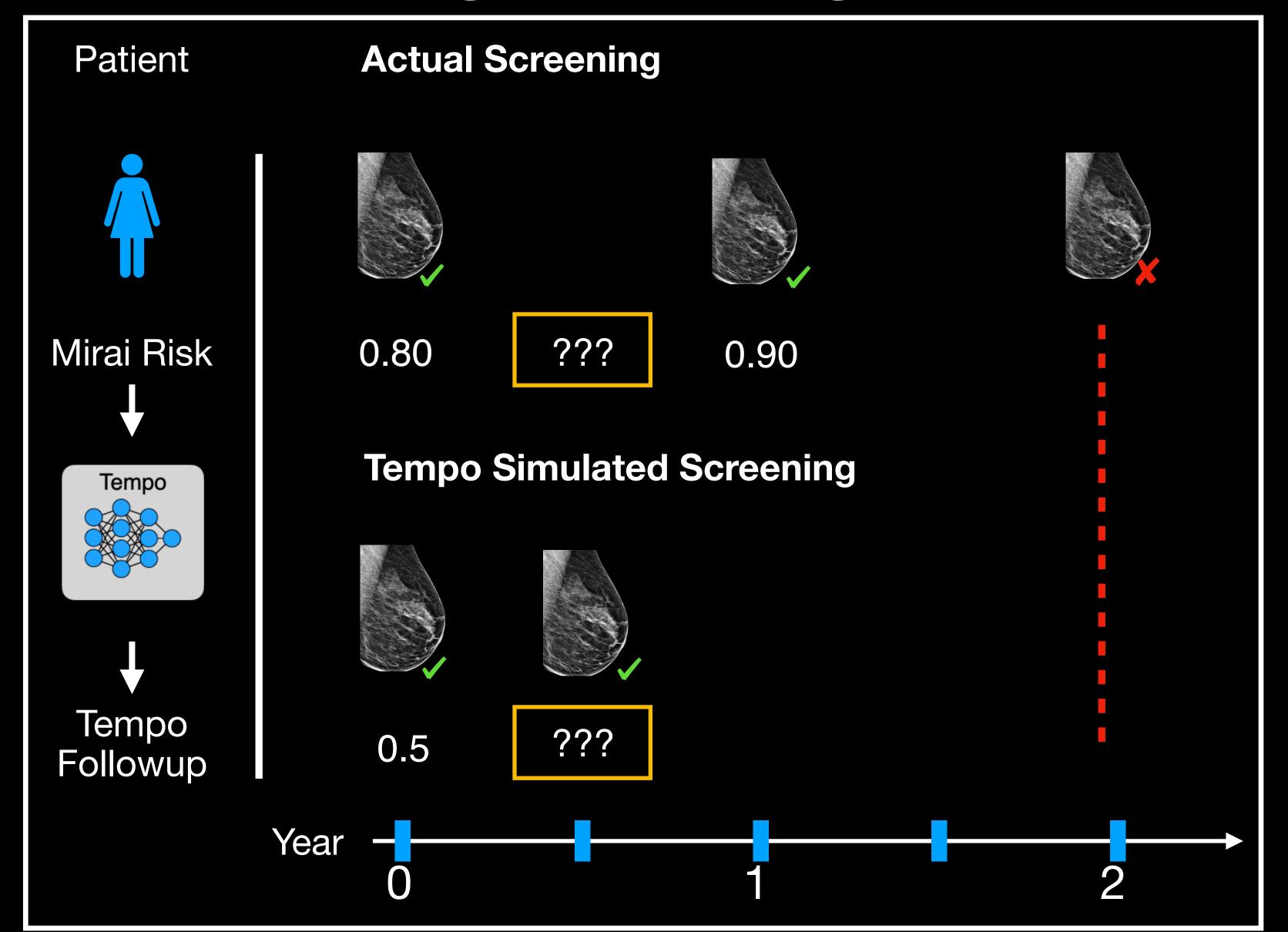


Optimized over population screening

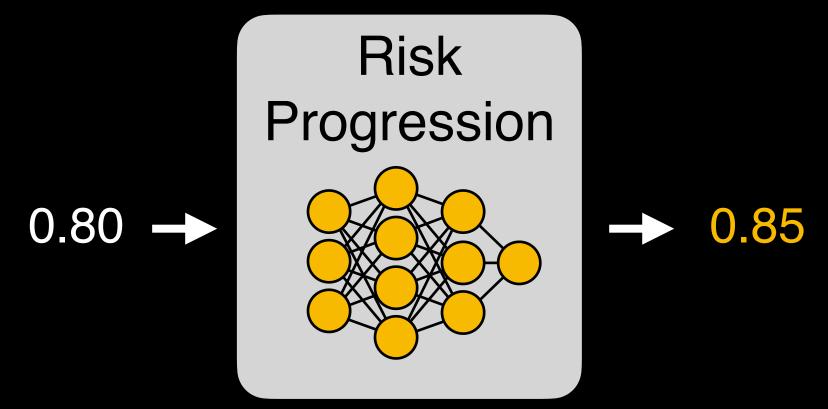




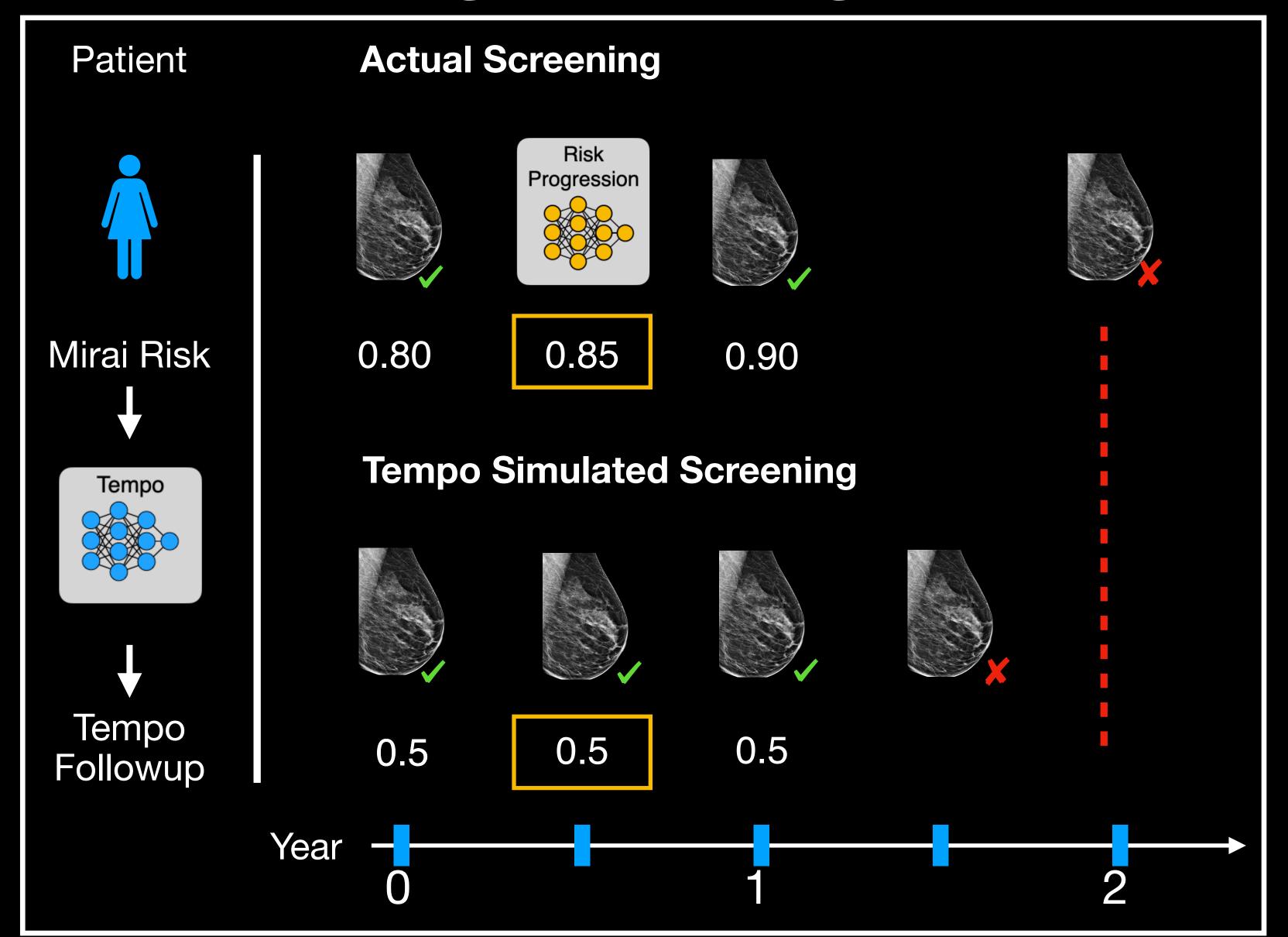
Estimating missing risk assessments



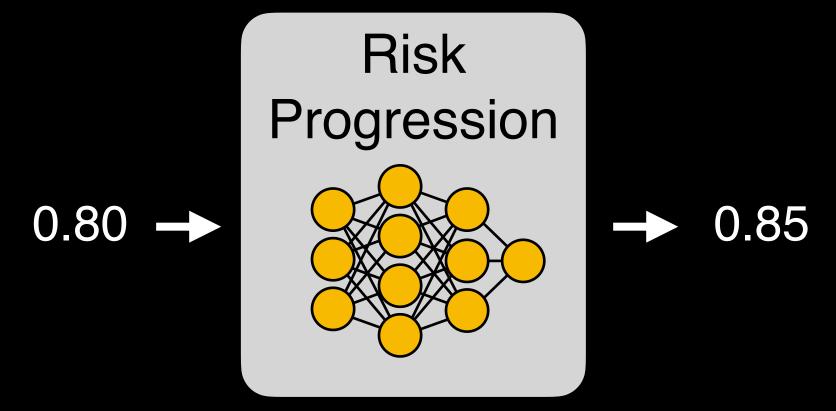
Learn $P(r_t | r_{t-1}, r_{t-2}, \dots, r_0)$



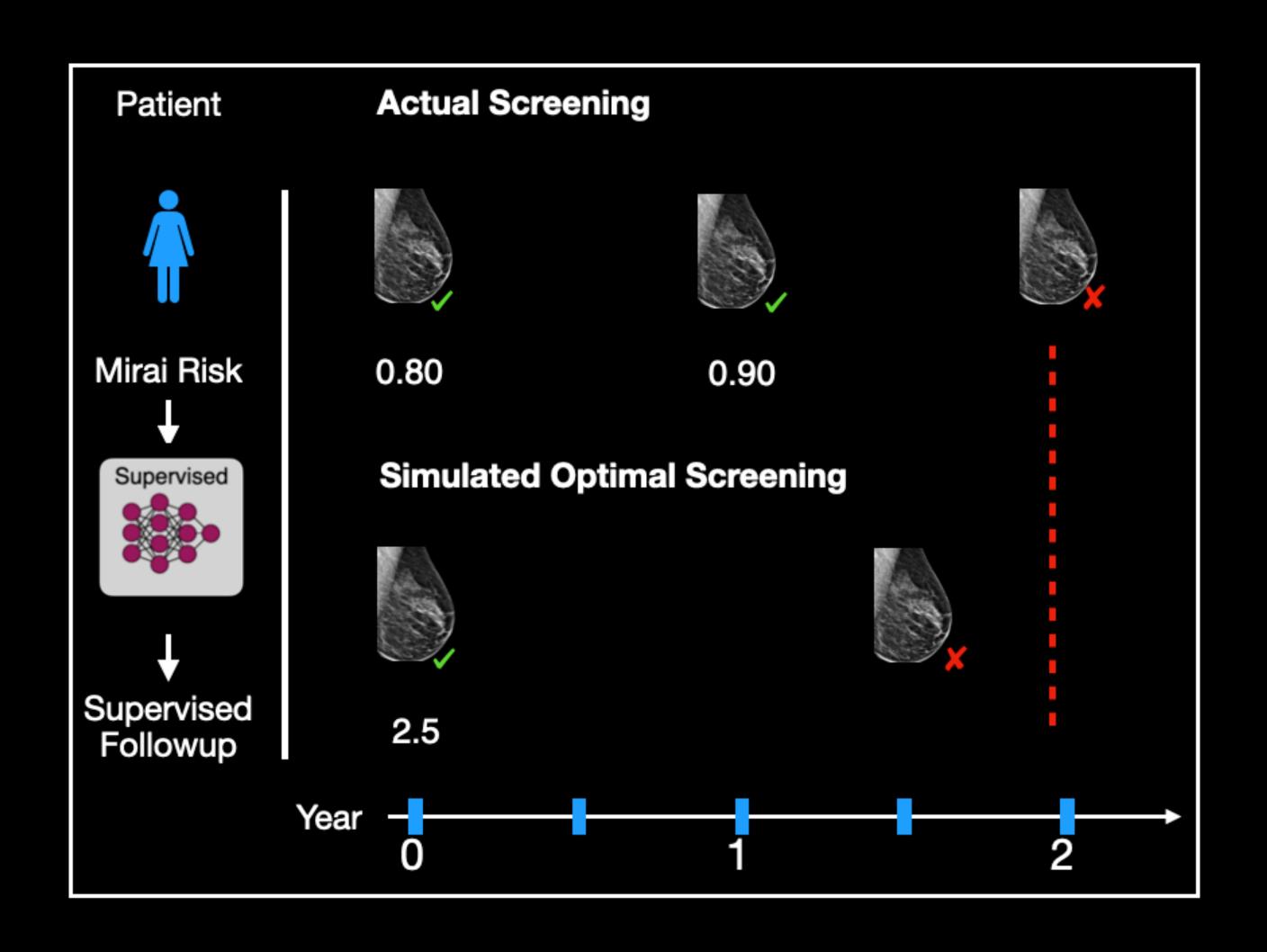
Estimating missing risk assessments

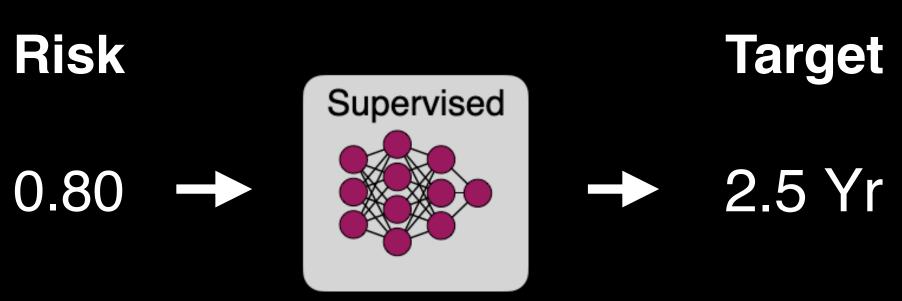


Learn $P(r_t | r_{t-1}, r_{t-2}, \dots, r_0)$



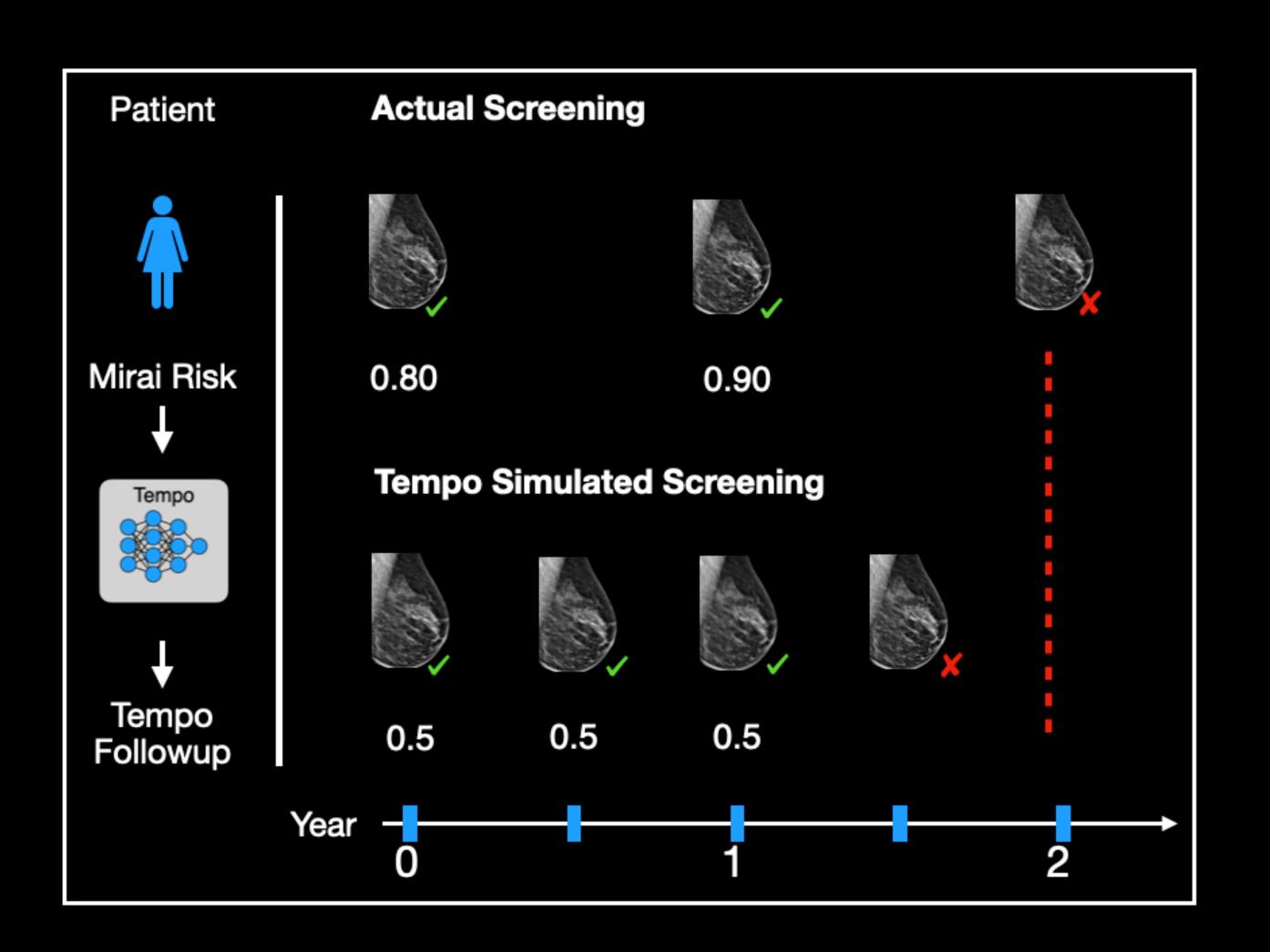
Baseline: Policy Design as Imitation

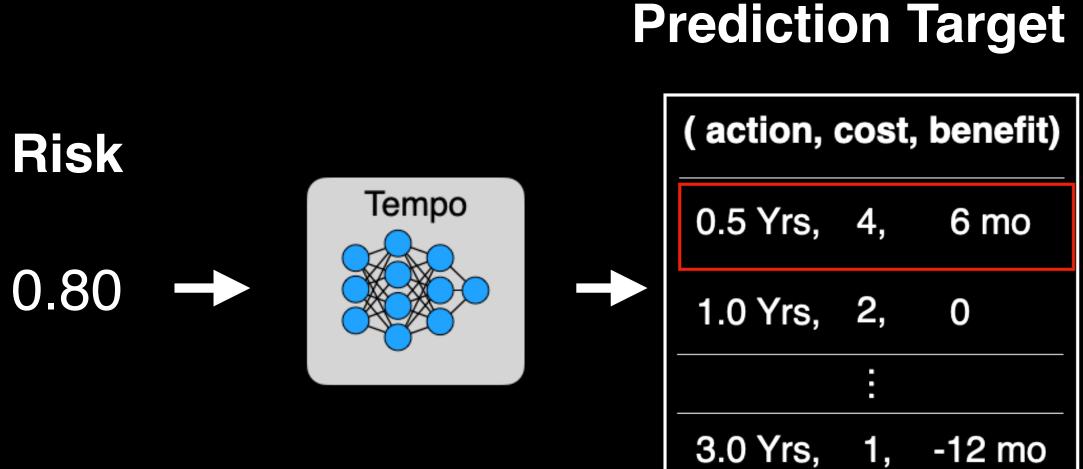




Reward = - | Prediction - Target |

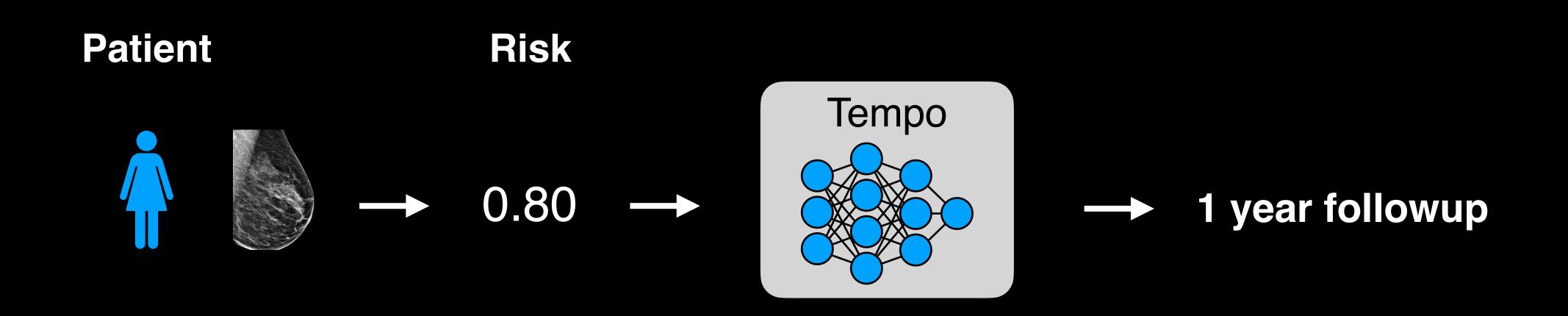
Tempo: Policy Design as Reinforcement Learning





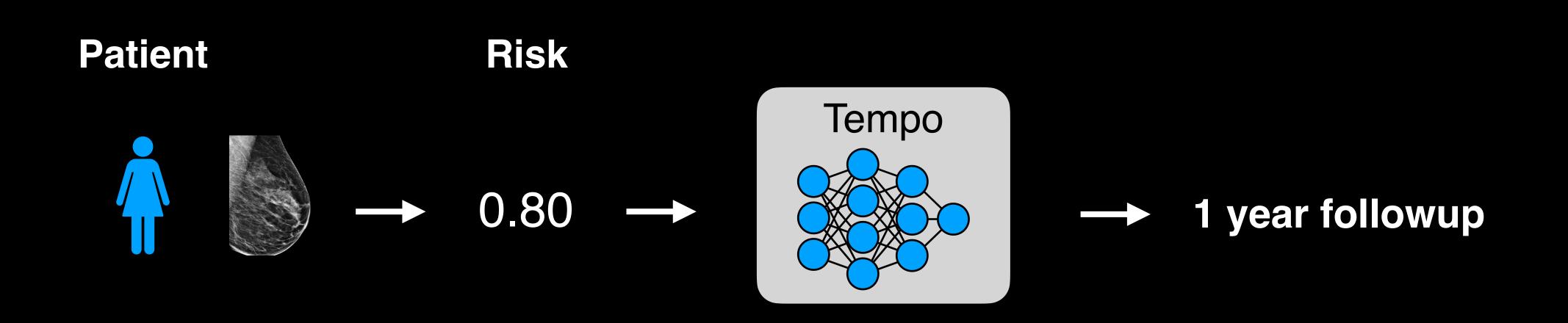
Reward = λ_1 Benefit - λ_2 Cost

Learning for a fixed preference



Reward = λ_1 Early Detection Benefit - λ_2 Screening Cost

Learning for a fixed preference: Q Learning

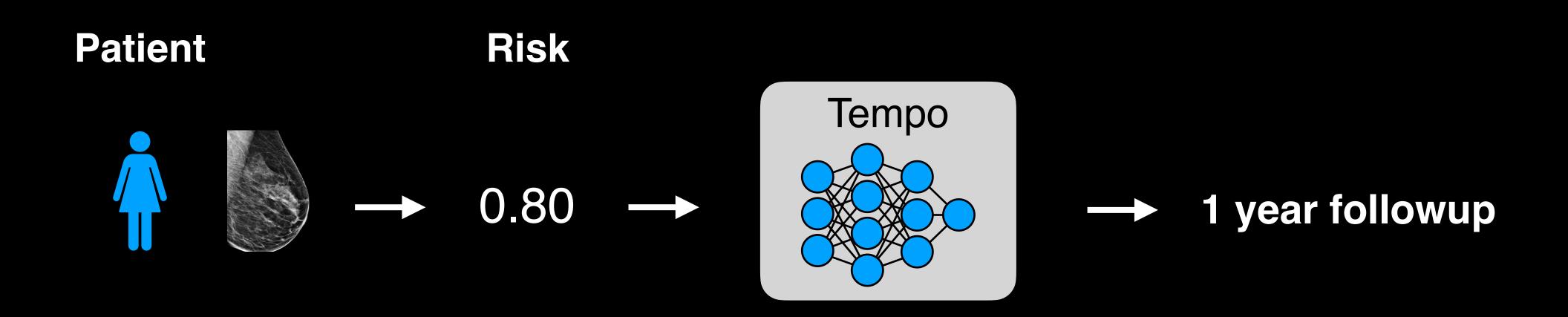


Reward = λ_1 Early Detection Benefit - λ_2 Screening Cost

$$Q(s, a) = R(s, a) + \gamma \max_{a} Q(s', a)$$

$$\mathcal{L}(s, a) = ||R(s, a) + \max_{a} Q(s', a) - Q(s, a)||^{2}$$

Tricks for stable training

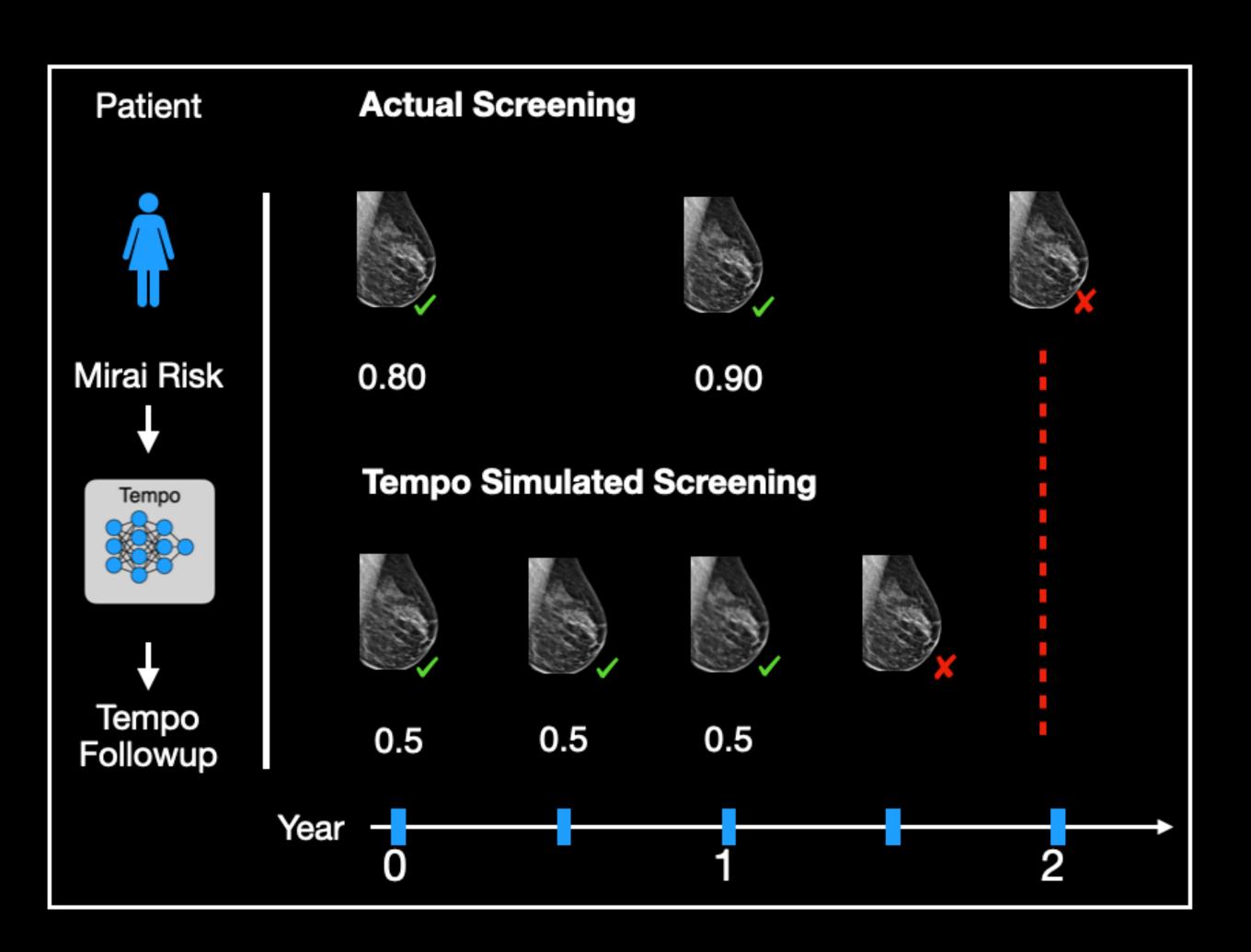


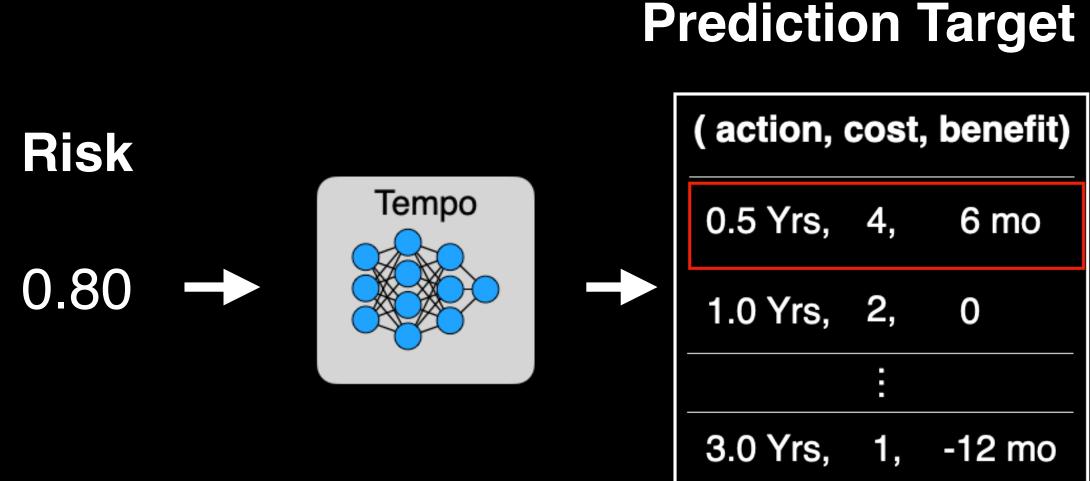
Randomly sample transitions from Experience Replay Buffers

Use slowly updated target network (i.e. copy Q every 100~ steps)

$$\mathcal{L}(s, a) = ||R(s, a) + \max_{a} Q_{target}(s', a) - Q(s, a)||^{2}$$

Scaling to unknown preferences

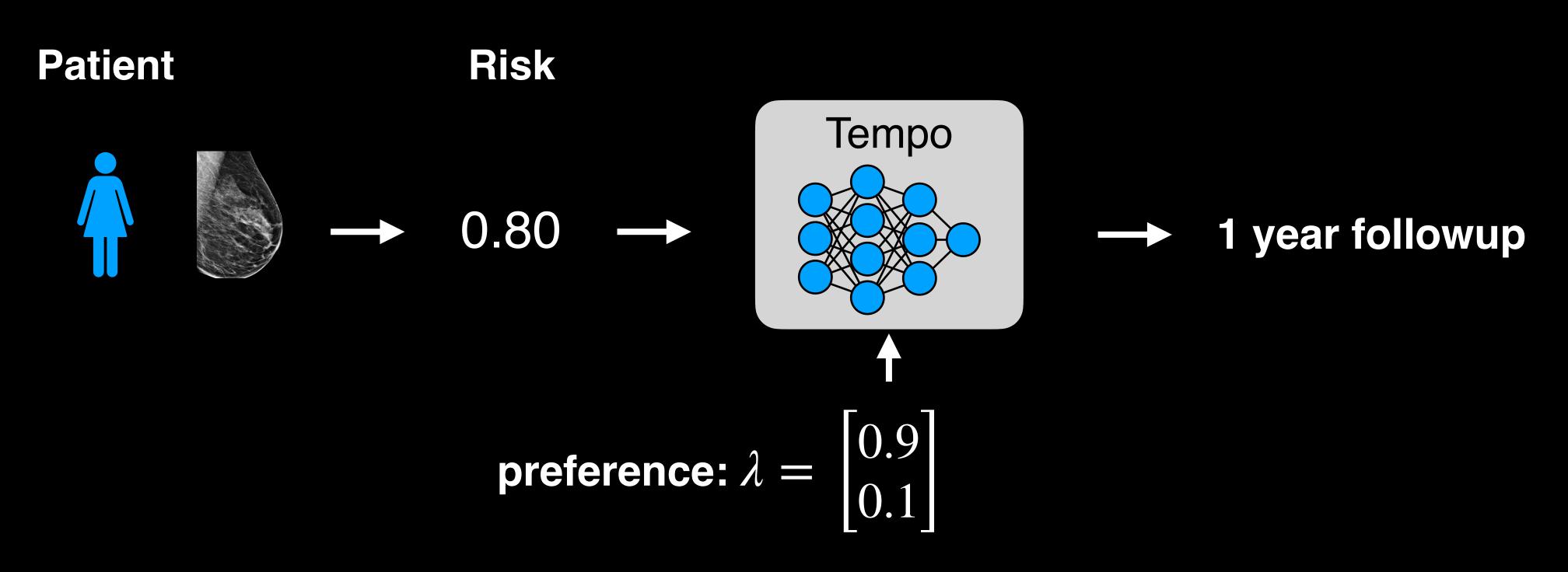




Reward = λ_1 Benefit - λ_2 Cost

- 1 unknown at training time
- + We have access to [Benefit, Cost]

Supporting diverse clinical requirements

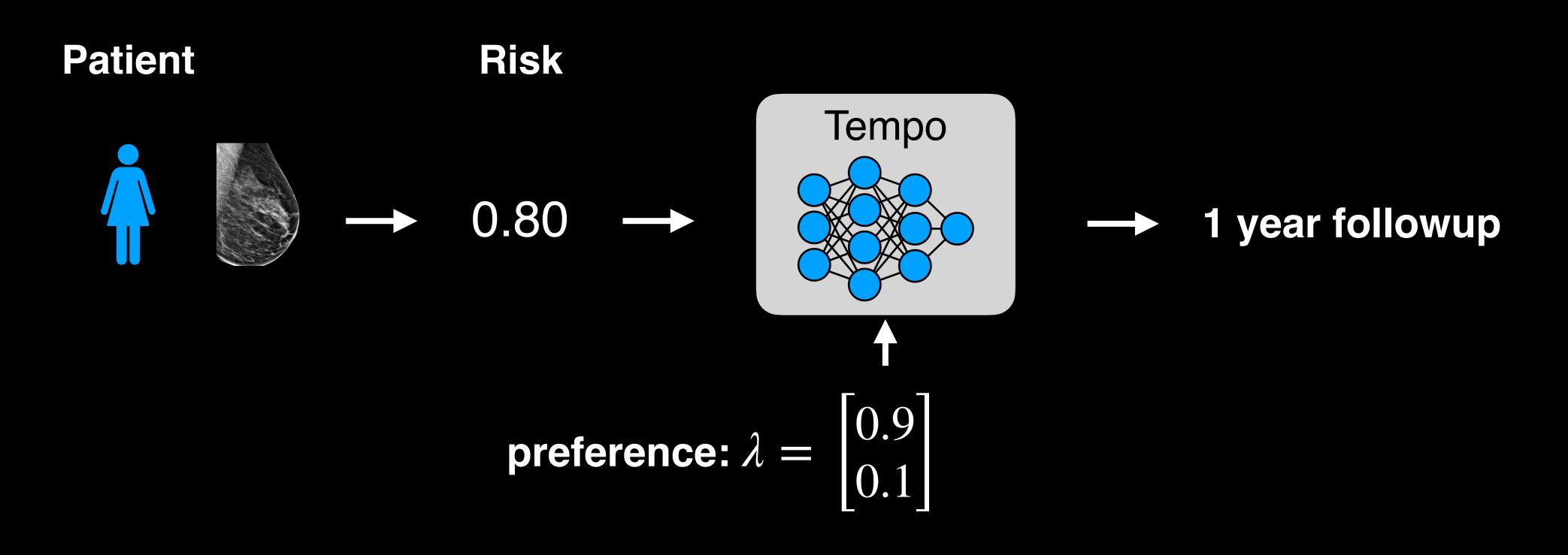


 $\vec{r}(s, a) = [Early Detection, Screening Cost]$

Trained across possible (λ_1, λ_2) to maximize:

 $\lambda \cdot \vec{r} = \lambda_1$ Early Detection Benefit - λ_2 Screening Cost

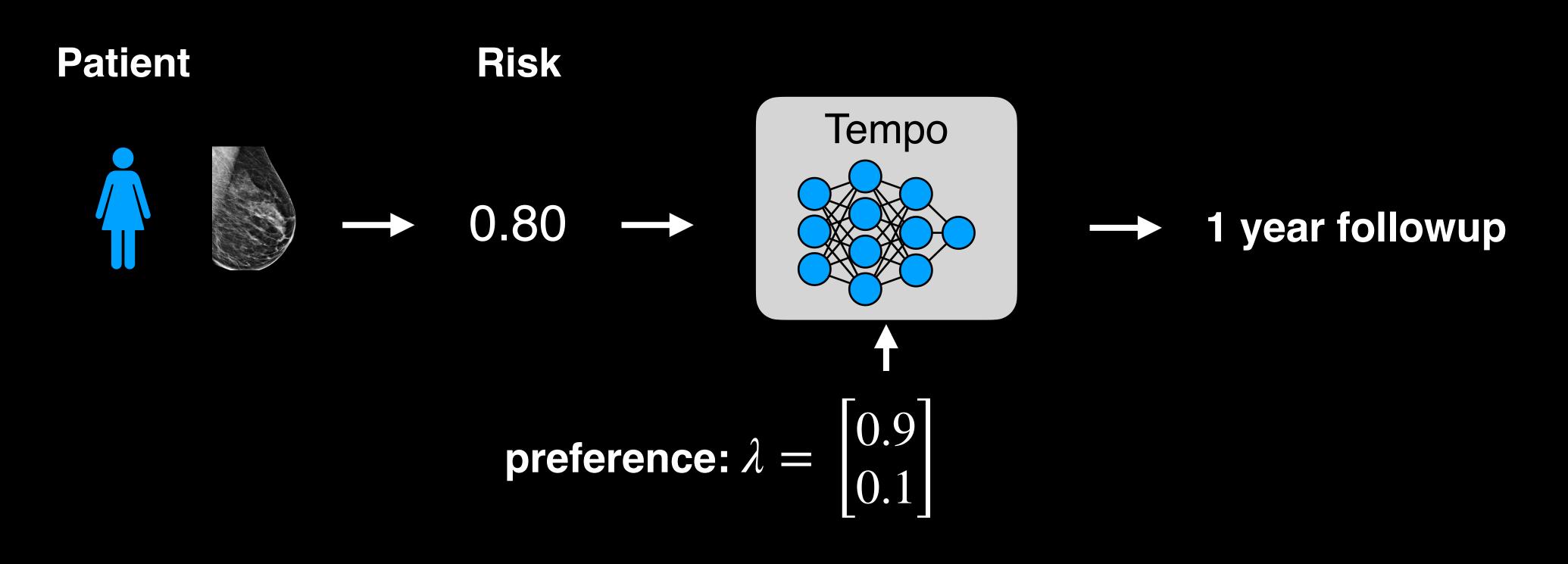
Towards multi-objective RL: Scalarized updates



$$\vec{r}(s, a) = [Early Detection, Screening Cost]$$

$$Q(s, a, \lambda) = \lambda \vec{r}(s, a) + \gamma \lambda \max_{a} Q(s', a, \lambda)$$

Towards multi-objective RL: Scalarized updates

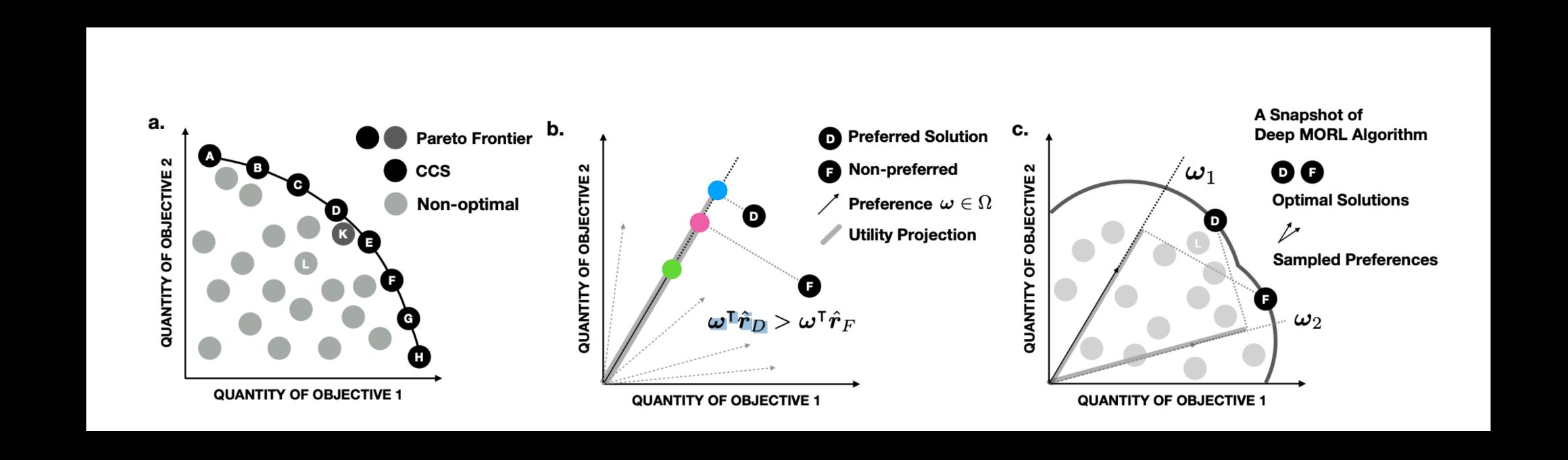


$$\vec{r}(s, a) = [Early Detection, Screening Cost]$$

$$Q(s, a, \lambda) = \lambda \vec{r}(s, a) + \gamma \lambda \max_{a} Q(s', a, \lambda)$$

Doesn't use relationship between λ

Envelope Q-Learning



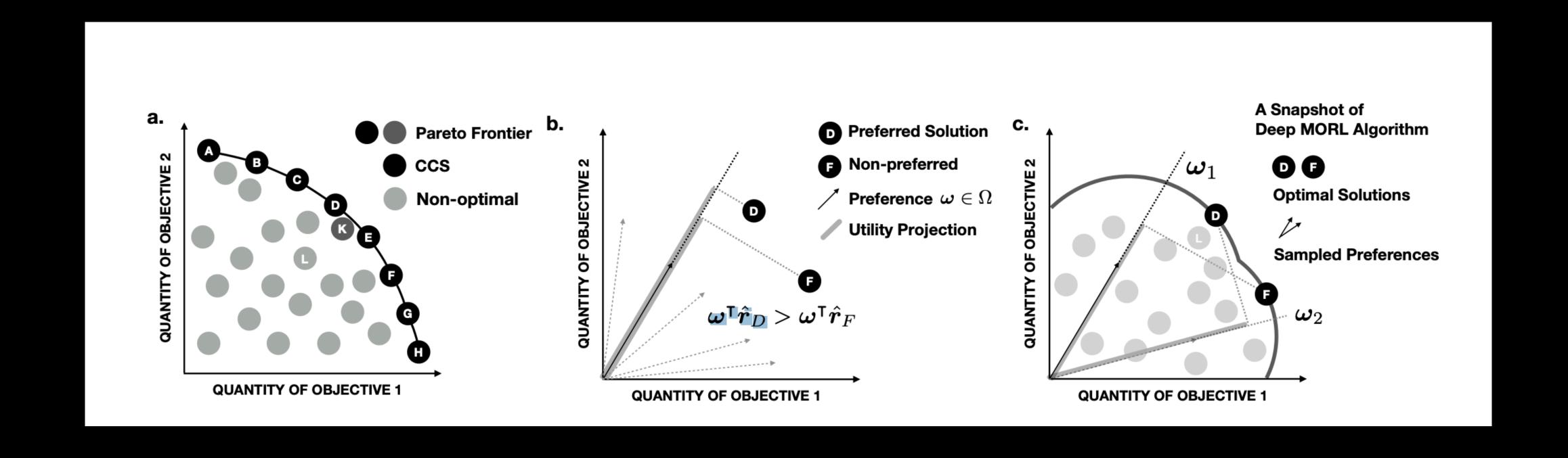
Search envelope of policy:

Identify λ' more effective for true target λ

A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation

Runzhe Yang, Xingyuan Sun, Karthik Narasimhan

Envelope Q-Learning



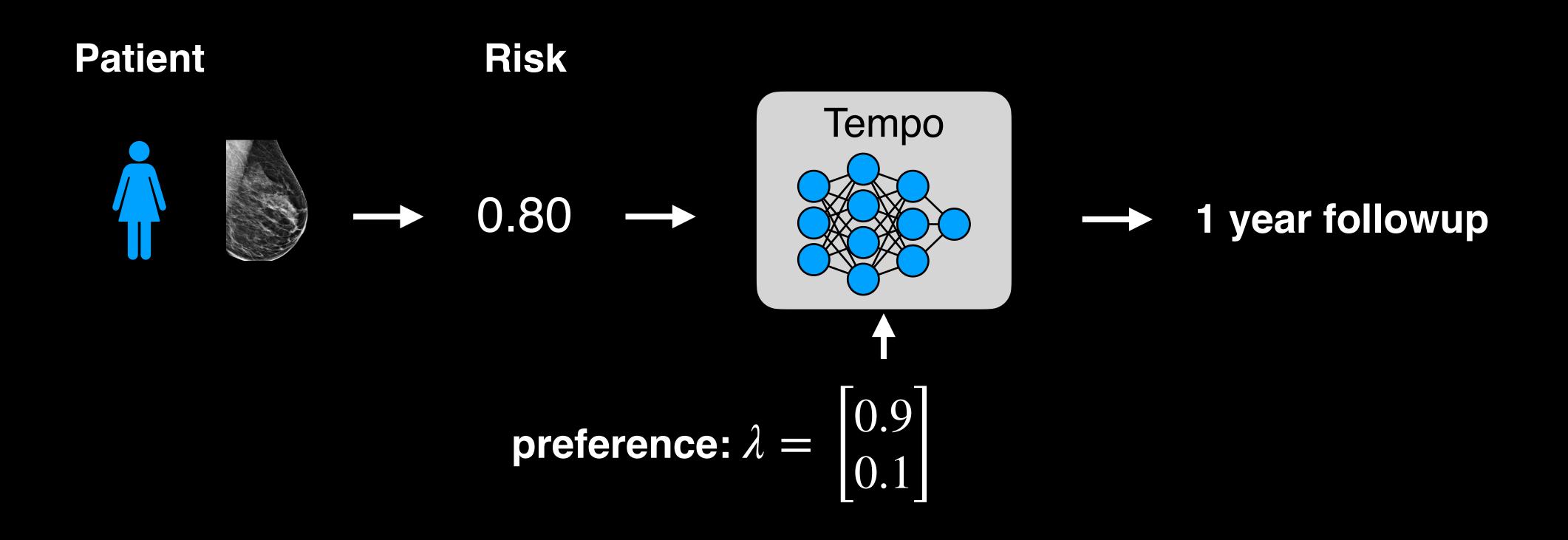
$$y = \vec{r}(s, a) + \gamma \arg_{Q} \max_{a, \lambda'} \lambda^{t} Q(s', a, \lambda')$$

$$\mathcal{L}(s, a, \lambda) = ||y - Q(s, a, \lambda)||^2$$

A Generalized Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation

Runzhe Yang, Xingyuan Sun, Karthik Narasimhan

Supporting diverse clinical requirements



Trained across possible (λ_1, λ_2) to maximize:

 λ_1 Early Detection Benefit - λ_2 Screening Cost

Experimental Setup

Train all models on MGH training set

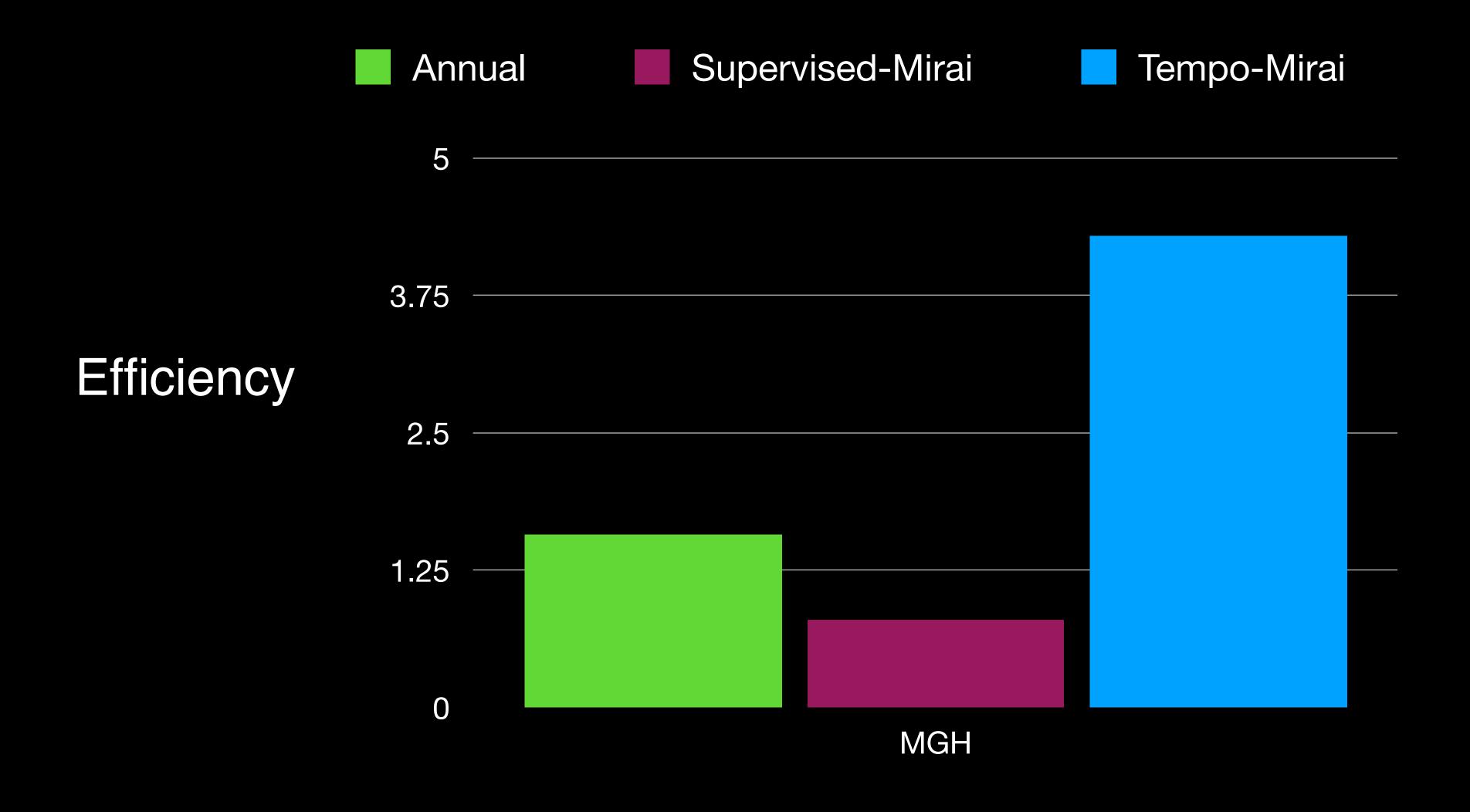
Test on MGH, Emory, Karolinska, and CGMH

Evaluate Screening Efficiency:

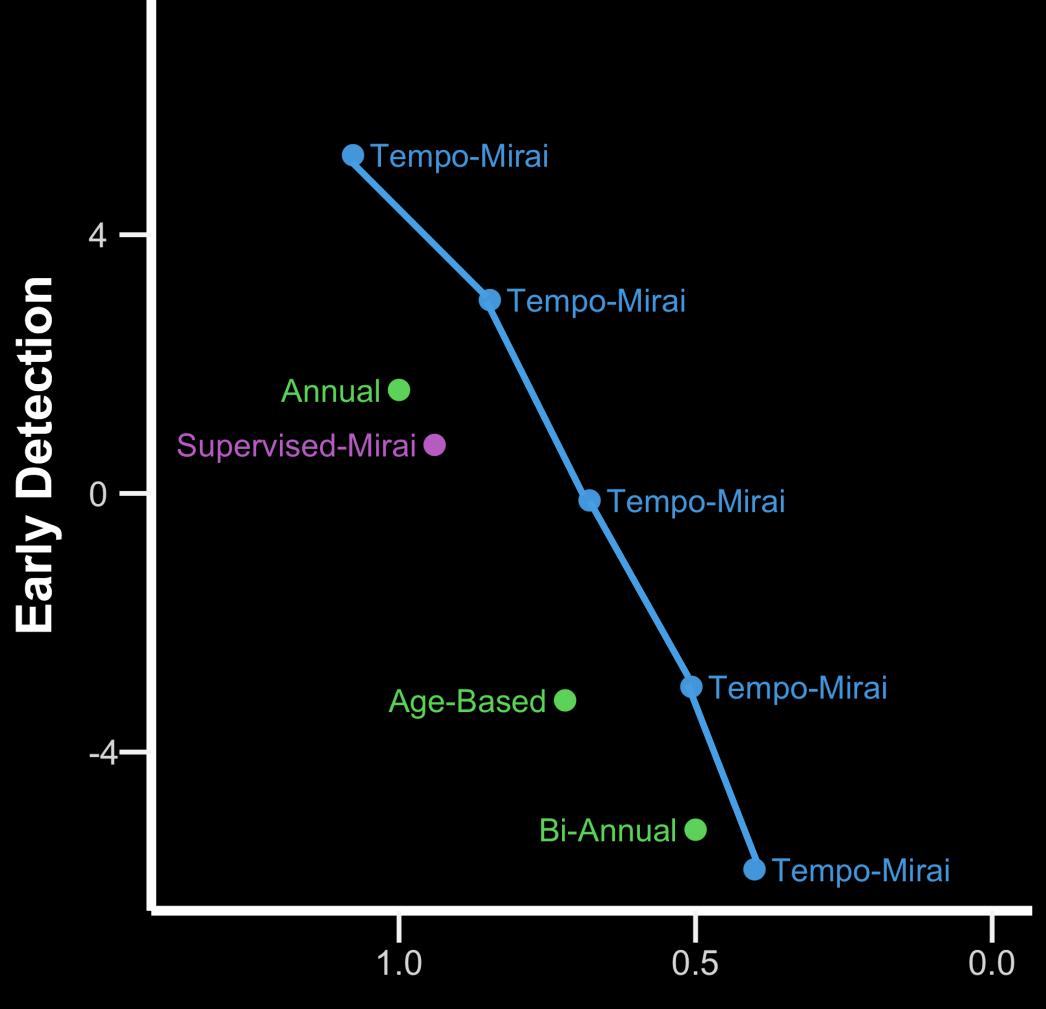
Early Detection

Avg Mammo per Year

Results: MGH Screening Efficiency



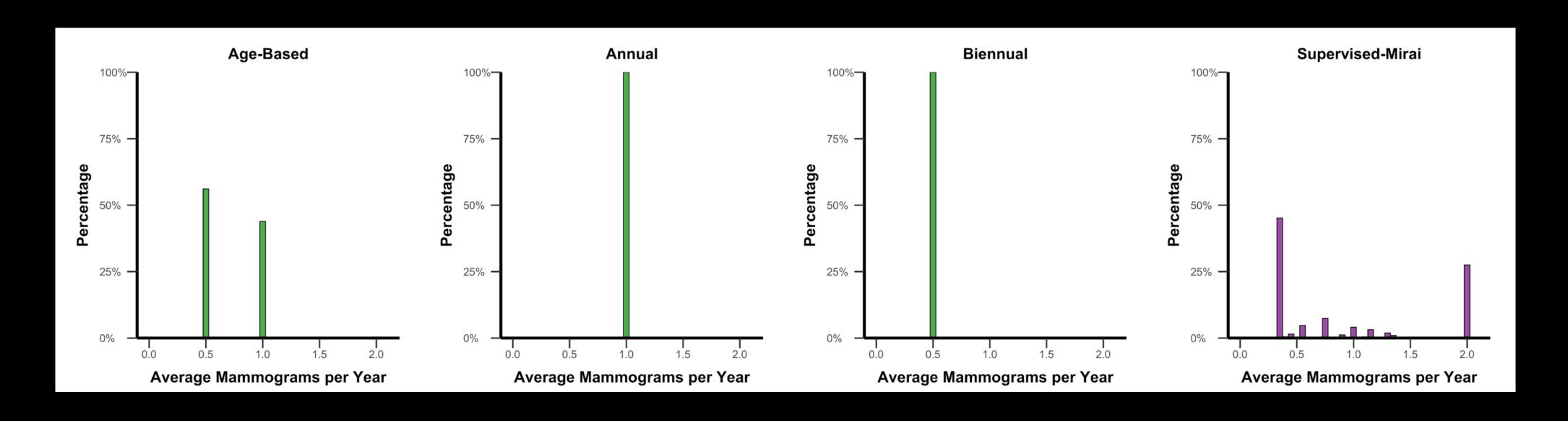
Supporting diverse clinical needs

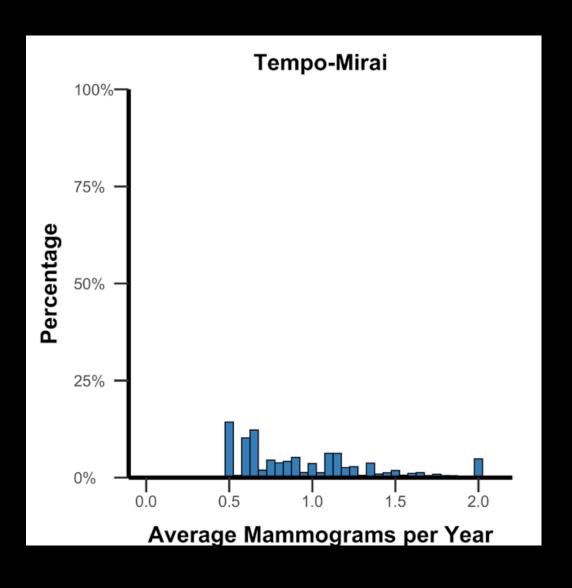


Average Mammograms Per Year

MGH Test Set

How do the policy behave?



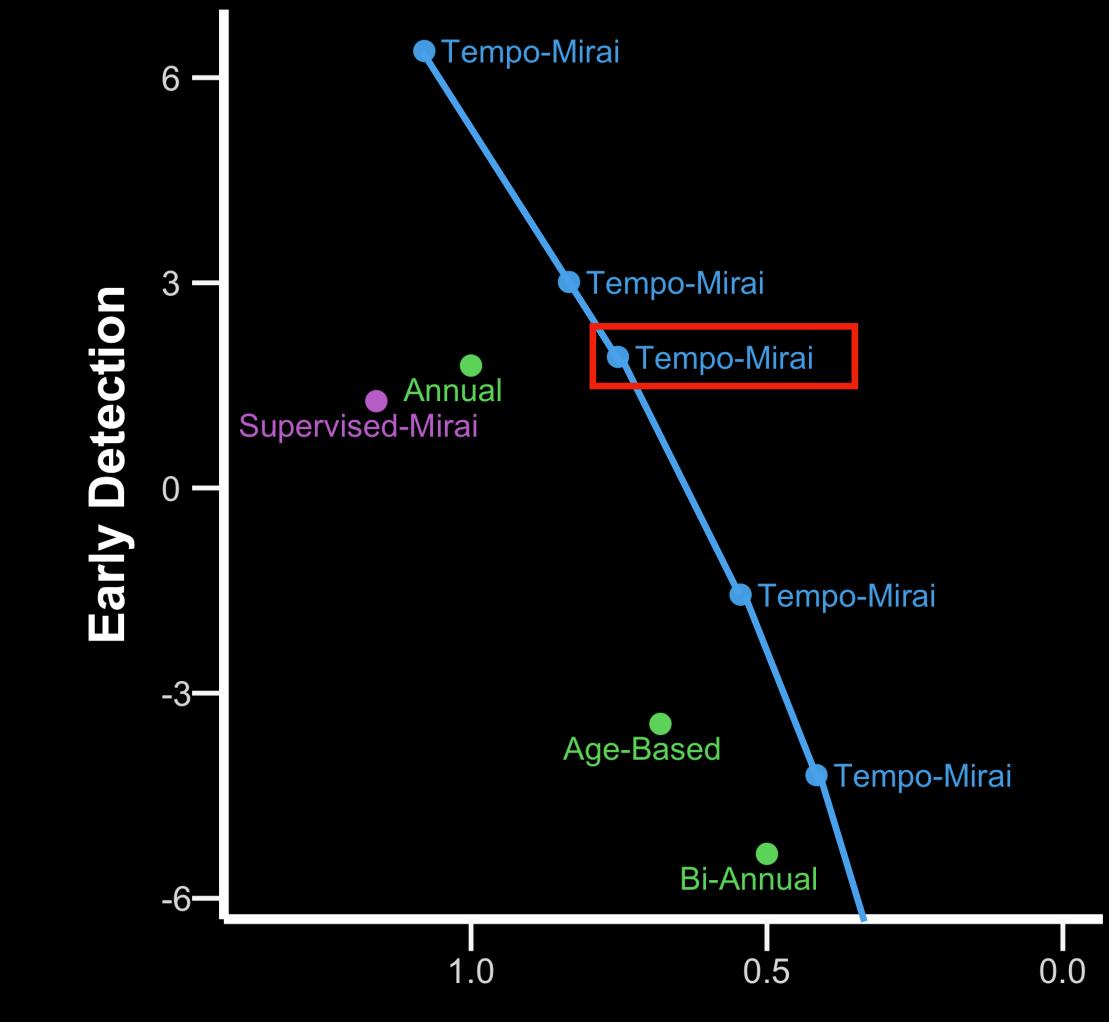


How to Deploy?

Validate on retrospective data

Choose desired operating point

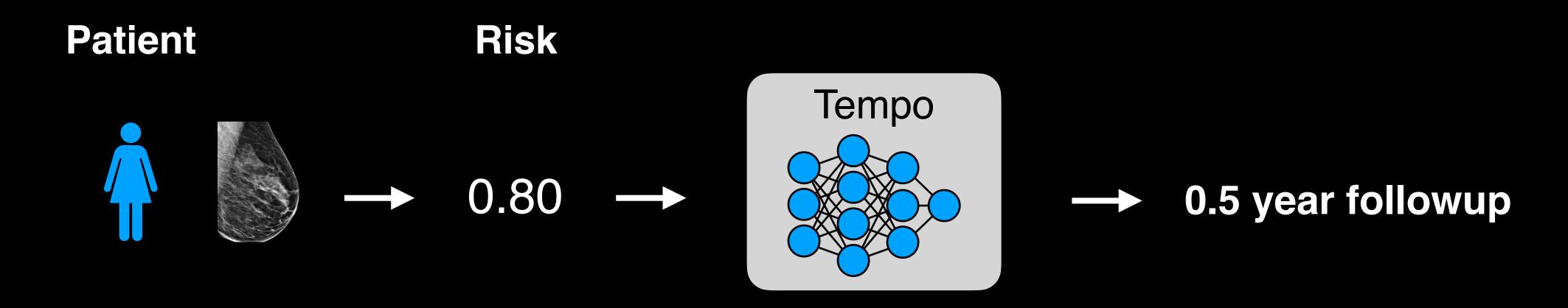
Run prospective trials



Average Mammograms Per Year

Emory Test Set

Summary

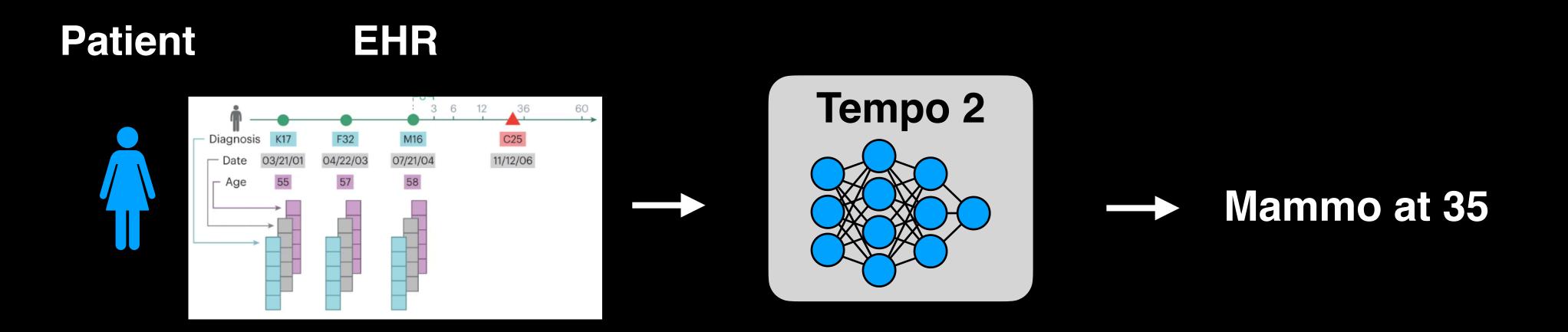


Learn personalized screening policies by modeling individuals

Applicable with arbitrary reward design / choice of risk model

Better early detection and less overscreening

Ongoing Work: Al to start cancer screening



Model all disease codes in EHR + EHR of Parents

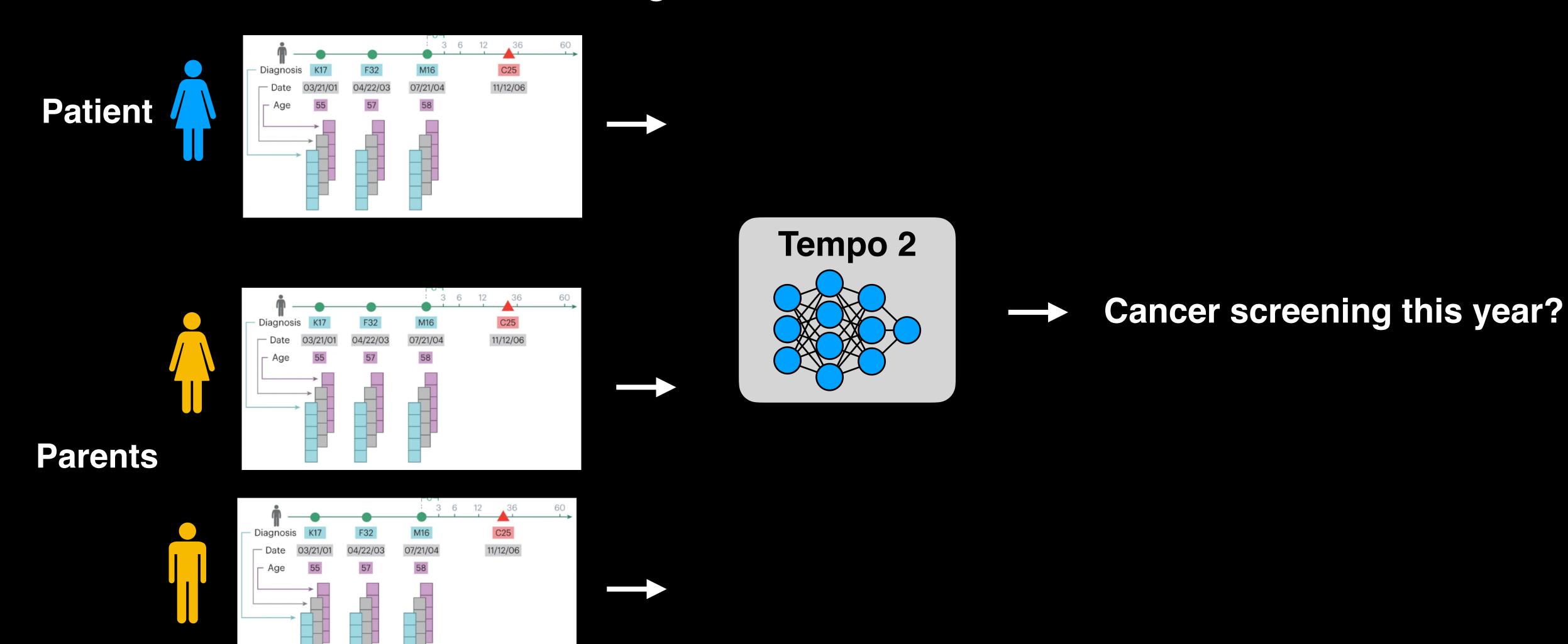
At each year, Al predicts if to screen for cancer [mammo, LDCT, etc]

Goal: Help women < 40, non-smokers who get lung cancer, etc.

Led by: Mikkel Odgaard

Ongoing Work: Al to start cancer screening

EHR Records + Info in Danish Registries



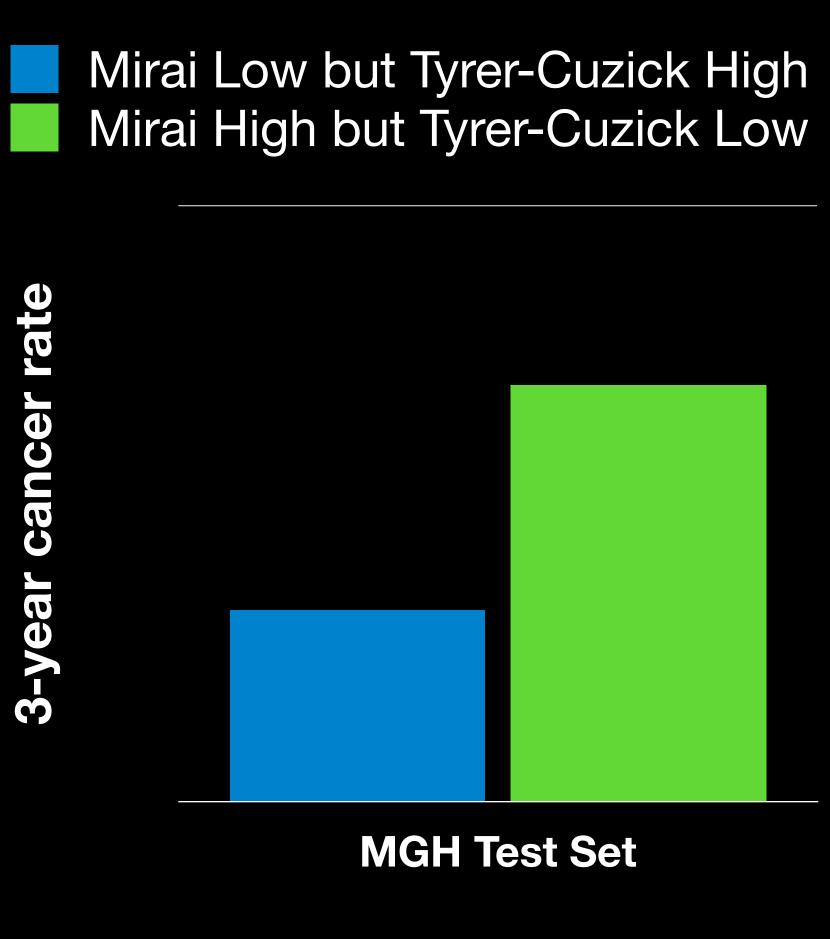
Today: Towards Al-driven care

Prediction Control Translation

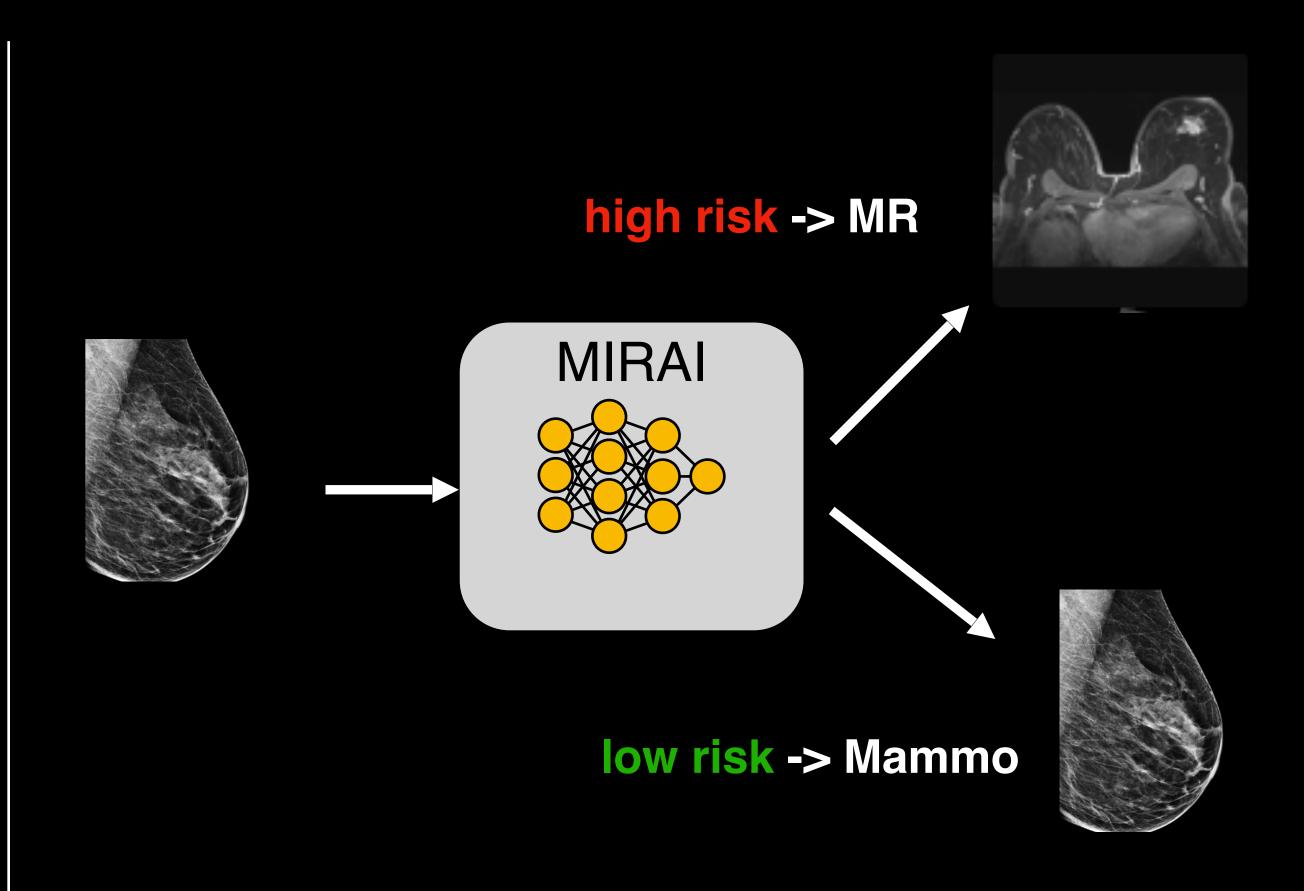
Today: Towards Al-driven care

Translation

Ongoing Prospective Trials: Mirai-MRI



Retrospective analysis



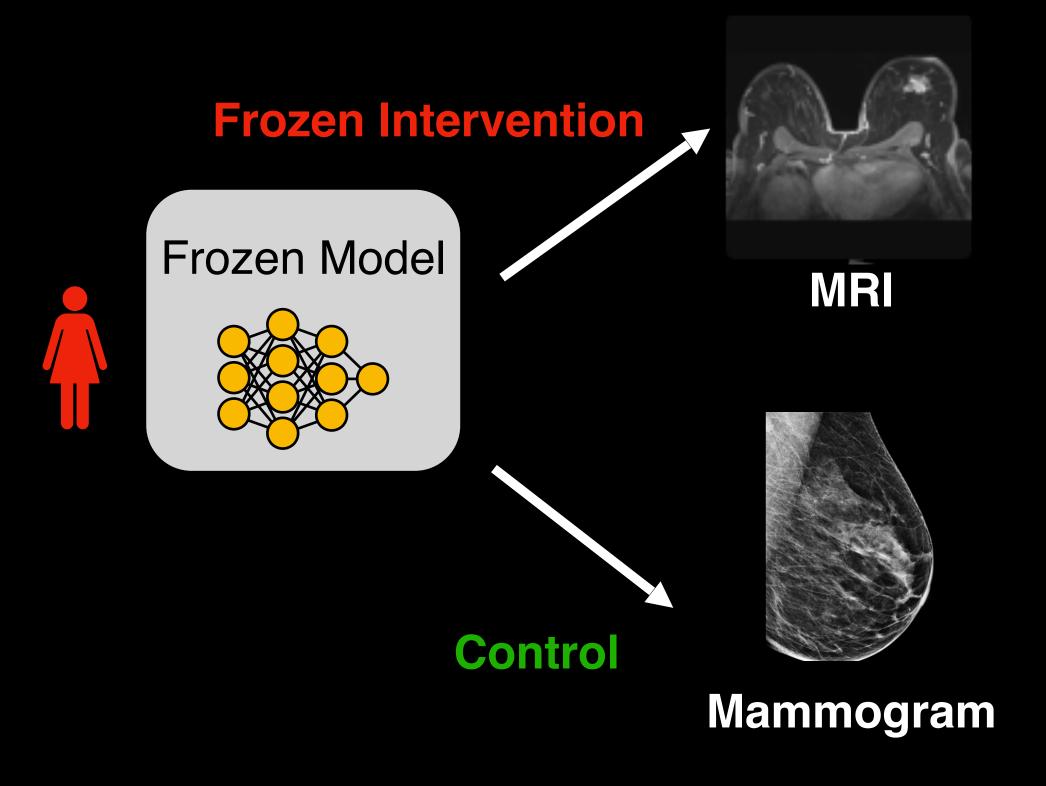
Mirai-based Supplemental Imaging NCT 05968157

Ongoing Prospective Trials: Mirai-SDA

SDA Workflow:

- Realtime Al-based cancer risk assessment
- Invite high risk patient for same-day diagnostic exam
- Expectation: >50% of cancer cases will receive same-day diagnostic
- 100% enrollment so far!

How do we evaluate constant evolving Al tools?



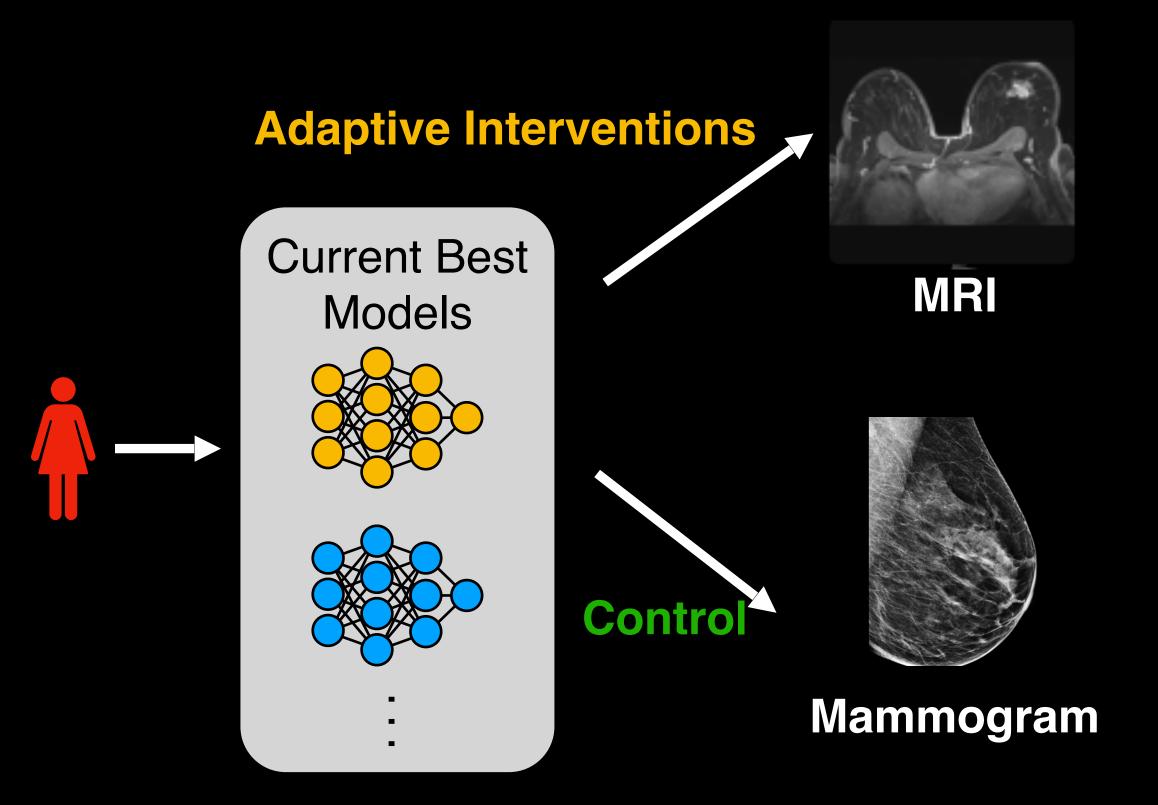
Led by: Wenxin Zhang

Al **obsolete** by end of trial..

Incompatible with rapid model innovation

Ongoing work: Reusable and Al-Adaptive RCTs

Adaptive Al-Platform Trials + RWE



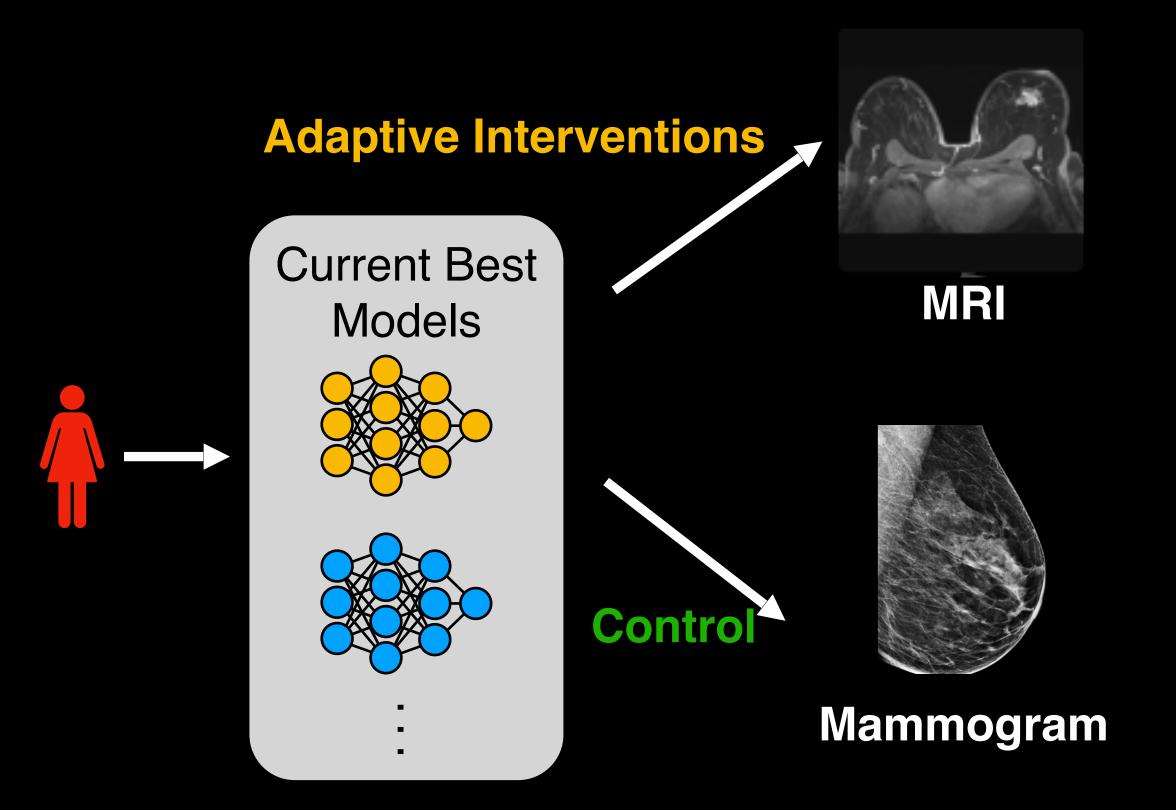
Continuous **platform trials** for improving Al Combine evidence across all models + historical data (RWE). **Fast**

Key Ideas:

- Al model allocates intervention
- Models generations overlap in decisions
- Re-use data and do adaptive enrollment

Simulation: Mirai-SDA

Adaptive Al-Platform Trials + RWE



Continuous **platform trials** for improving Al Combine evidence across all models + historical data (RWE). **Fast**

Mirai-1 Trial:

- Enroll 100 patients

Mirai-1.5 Trial

- Naive trial: 100 new patients
- -70% patients high risk by M1.5 and M1.0
- With data-reuse: 30 new patients

Trials will only get faster and easier

Ongoing work: BRIDGE Adaptive RCTs

Clinic		Legacy model	New model	Same training dataset?	Same input features?	Same model endpoint?	Top-5% Overlap (%)
Breast cancer		AI-Density	Mirai	✓	1	_	2.5
	st cancer	ImgOnly DL	Mirai	√	1	1	46.6

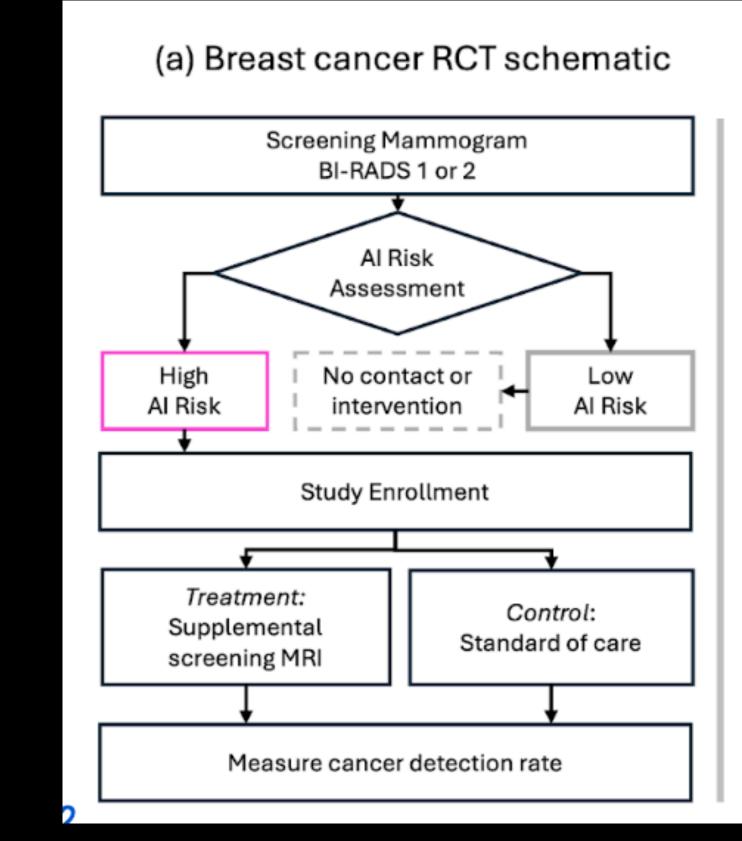
Cardiovascular disease	SEER	S4-ECG	_	/	_	14.2
	ResNet	S4-ECG	1	1	1	49.6
Sepsis	LSTM- Dynamic	LSTM-Full	1	_	1	49.3
•	LSTM-Full	GRU-Full	1	1	1	52.3

Overlaps are common!

Examples across:

- breast cancer (Mammo)
- cardiovascular disease (ECG)
- sepsis (EMR)

Ongoing work: BRIDGE Adaptive RCTs



(b) Conventional and subsequent BRIDGE-enabled RCT

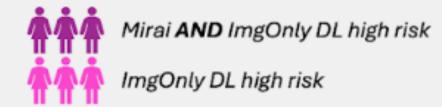
ImgOnly DL Trial

1. Identify high-risk patients

Enroll 21,765 trial participantsTotal trial cost: \$6.5M USD

Mirai Trial with BRIDGE

Deploy on legacy trial participants



Re-use data where model predictions overlap

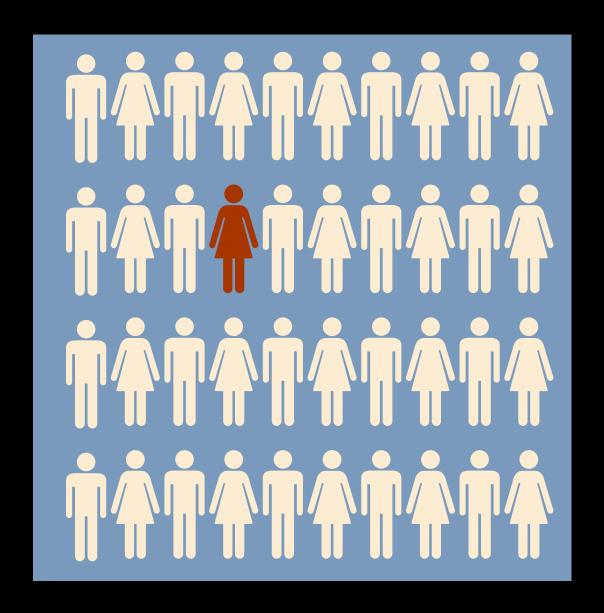
2. Identify additional high-risk patients

3. Enroll additional 11,190 trial participants
Total trial cost: \$3.4M USD

Recap: Towards Al-driven care

Prediction Control Translation

What if it all works?



Rethink screening criteria / guidelines across diseases

New doors for prevention and therapeutic development

Questions?

