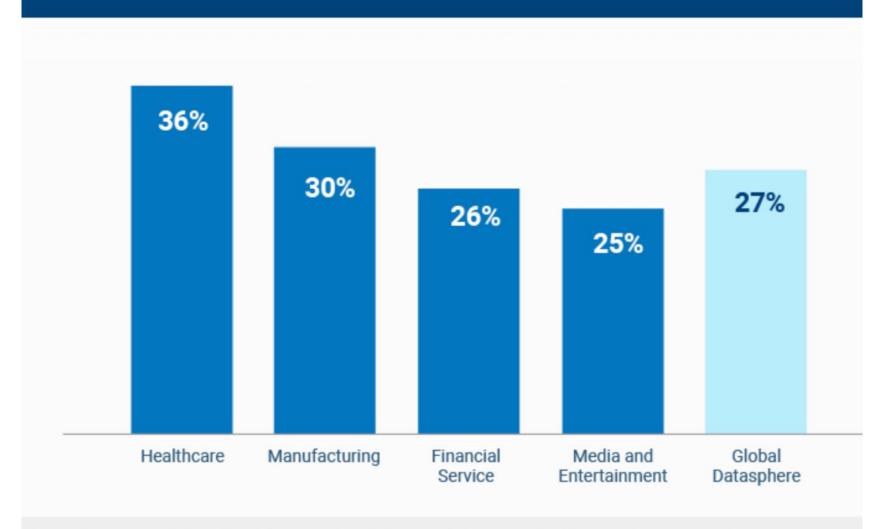


# Data 146: Foundations for CPH Other Health Data

Irene Y. Chen

# 30% of world's data volume is health data

#### 2018-2025 Data - Compound Annual Growth Rate (CAGR)



Source: Coughlin et al Internal Medicine Journal article "Looking to tomorrow's healthcare today: a participatory health perspective". IDC White Paper, Doc# US44413318, November 2018: The Digitization of the World – From Edge to Core".

## What is the goal of using health data?

- 1. Clinical outcomes: Given a label (e.g., diagnosis), predict patients most at risk
- 2. Patient trajectories: Given the beginning of a disease trajectory, predict future events over time
- 3. Disease subtypes: Unsupervised learning to determine heterogeneity in patient population
- Population monitoring: Identify emergent public health concerns and where population-level interventions would be helpful

### Outline

- Genomic data (10 mins)
- Wearables (10 mins)
- Insurance claims (10 mins)
- Social media data (10 mins)
- Discussion (10 mins)

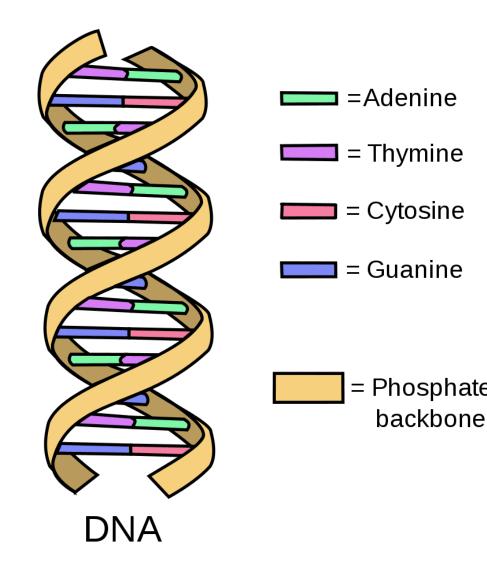


How can we make Data 146 better for you?

Learning Objective: Understand health data sources and potential challenges

### Genomic data

- Organism's complete set of DNA, including sequence of genes, functions, how they're regulated
- Usually includes:
  - Germline genotypes (SNPs)
  - Whole genome sequences
  - Polygenic risk scores (PRS)
- Example paper: Kooperberg etl a, "Risk Prediction using Genome-Wide Association Studies", Genetic Epidemiology 2011.



If you had EHR + genotype data, what would you try to predict? What would be the baseline you compare it to? (Partner discussion)

# Risk Prediction using Genome-Wide Association Studies

- Showed effectiveness of using genetic markers in SNPs through Genome-Wide Association Studies (GWAS)
- Used sparse regression methods, i.e., lasso and elastic net regression, because of extremely high-dimensional data
- Wanted to individual disease risk for Crohn's disease, type 1 diabetes, and type 2 diabetes
- They found that using hundreds of SNPs improved prediction model

### Genomic data

#### Pros:

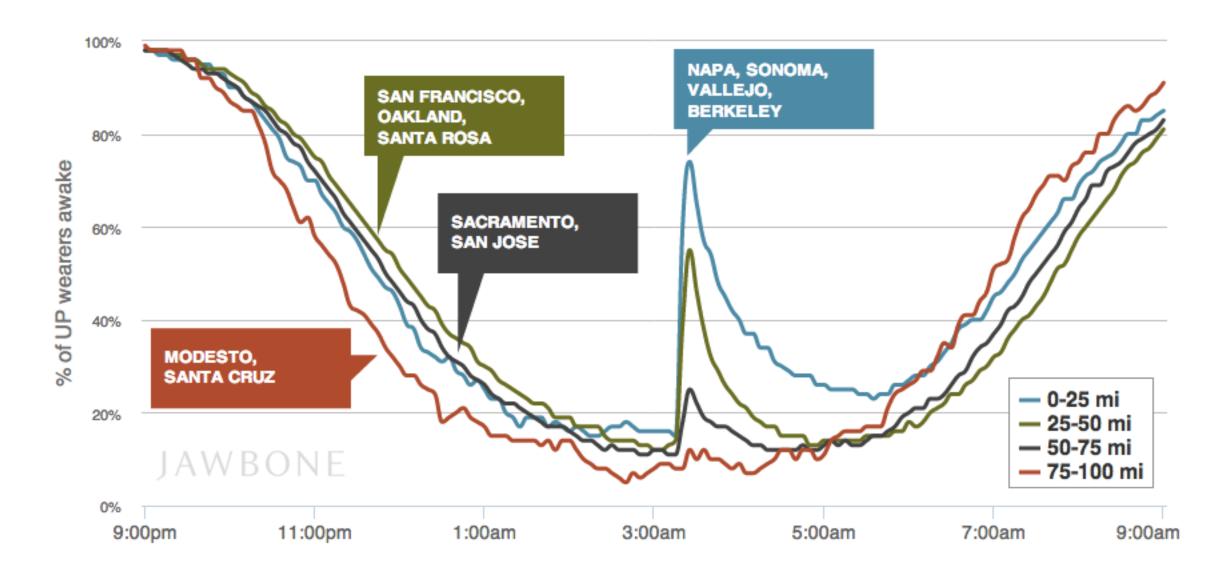
- High dimensional data
- Lifelong prediction
- Could enable precision medicine
- Growing number of datasets

#### Cons:

- Effect sizes for many common diseases are small
- Many studies focus only on people of European descent (78%)
- Data privacy issues

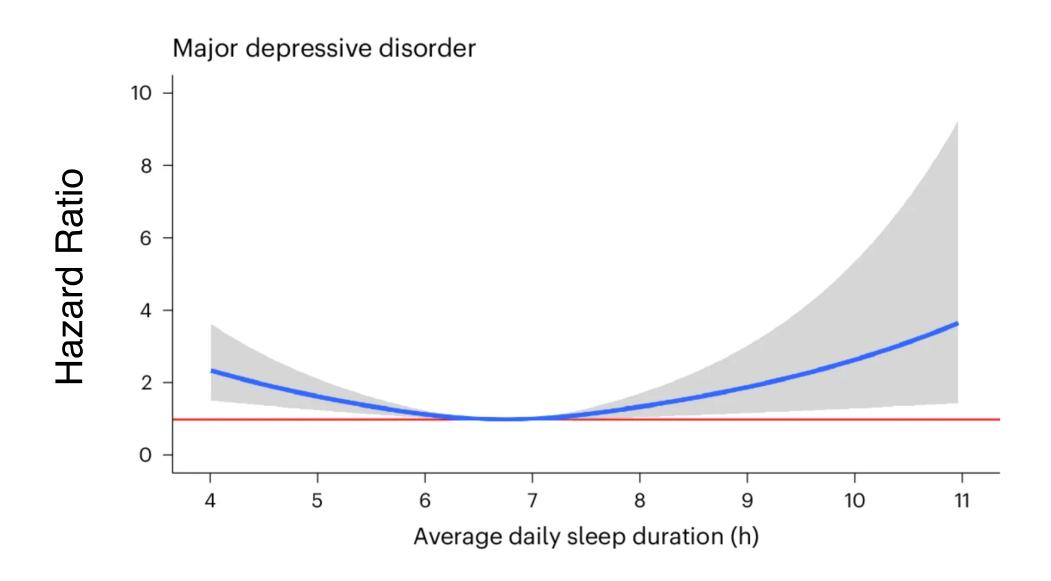
### Wearables

- Data collected from sensors that people wear (e.g., wrist bands, smart socks, chest patches)
- Variables include step count, heart rate, sleep duration



## Example papers:

- Quer et al, "Wearable sensor data and self-reported symptoms for COVID-19 detection", Nature Medicine 2020.
  - AUC of 0.80
  - Combination of wearable sensor and app-solicited symptoms (e.g., body aches)
- Zheng et al, "Sleep patterns and risk of chronic disease as measured by long-term monitoring with commercial wearable devices in the All of Us Research Program", *Nature Medicine* 2024.



# What kind of issues might come up for using wearable data?

## Wearables

#### Pros:

- Continuous measurements outside of the healthcare system
- Low friction to gather longitudinal data
- Opportunity for early detection

#### Cons:

- Data quality or missingness issues (e.g., people not wearing)
- Equity issues: wearable users skew certain socioeconomic groups
- Interoperability concerns
- Ground-truth labeling

#### Insurance claims

- Claims data are administrative data generated for billing purposes (e.g., Medicare/Medicaid, commercial insurance companies)
- Similar to EHR data, contains diagnoses, procedures, prescriptions – and sometimes cost data
- Example paper: Ji et al, "Large-Scale Study of Temporal Shift in Health Insurance Claims", CHIL 2023

### Insurance claims

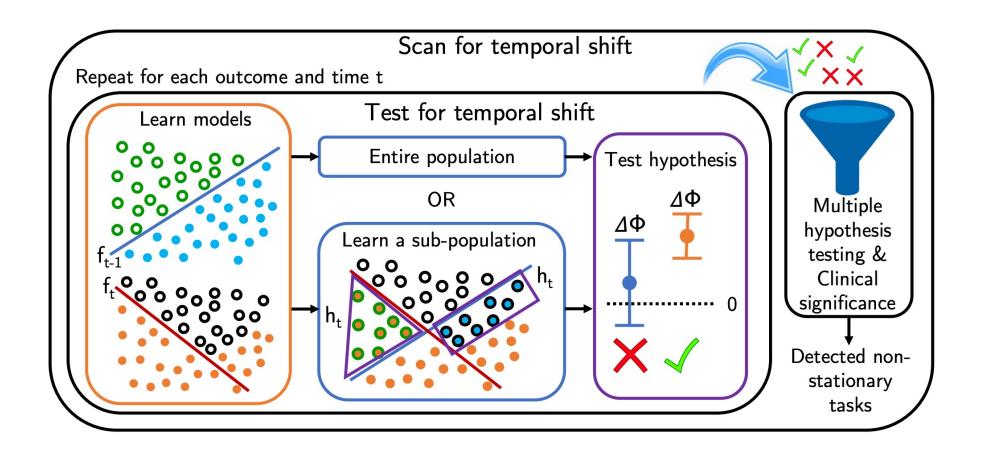
#### Pros:

- Large scale, often larger than single hospital, usually nationwide
- Longitudinal claims across trajectories of care
- Well-structured

#### Cons:

- Used for billing, not research, so diagnoses may be changed to justify reimbursement
- No clinical details: lab values, vital signs, imaging, severity of disease
- Censoring: patients might change insurers
- Confounding: claims reflect treated populations, omitting uninsured

# Large-Scale Study of Temporal Shift in Health Insurance Claims



# Large-Scale Study of Temporal Shift in Health Insurance Claims

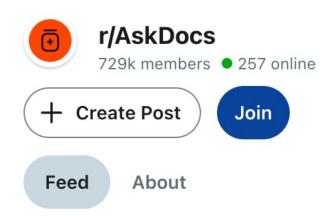
- Large private health insurance claims dataset (1.6 million patients, 15k features) from 2015 to 2020
- Defined 1010 prediction tasks across 242 health outcomes, predicting if outcome would occur in 3 months
- Interested in determining if temporal shift would occur
  - 9.7% of tasks had a shift for entire population
  - 93.0% of tasks had a shift for specific groups
- Majority of shifts (62 out of 98) happened in 2020 during the pandemic

# How would you account for temporal changes (coding, policy, population risk)?

### Social Media Data

 Data from platforms where users generate content (e.g., Twitter, Reddit, Facebook, Youtube)

 Example paper: Eichstaedt et al, "Facebook language predicts depression in medical records", PNAS 2018



# Facebook language predicts depression in medical records

- Used history of Facebook status updates from 638 consenting patients
  - 114 had documented degression diagnosis
  - 524 did not
- Analyzed over 524k Facebook updates
- Could predict depressed patients with AUC of 0.69, 3 months before first documentation of diagnosis
- Key predictors included phrases reflecting sadness, loneliness, and increased use of first-person pronouns

# What biases might arise from using social media data to understand health?

## Social Media Data

#### Pros:

- No standardization, authentic "patient voice"
- Captures people who are not well-served by healthcare system
- Potential large volume, potentially real-time

#### Cons:

- Selection bias: social media users aren't representative of population
- Noise and confounding: many posts are ambiguous
- Ethical/privacy issues: consent, de-identification, platform policy
- Hard to get ground truth

#### Other health sources

- Voice/speech data
- Facial and video data
- Environmental and geospatial data
- Mobility and transportation data
- LLM chat logs

### Discussion

- What other data sources could you use for health data?
- What is the tradeoff between richness and reliability (e.g., genomics and wearables data)?
- Who is missing from each data type? How can we measure those populations better?
- What is the difference between understanding and predicting health?

## Summary

- ✓ Genomic data (10 mins)
- ✓ Wearables (10 mins)
- ✓Insurance claims (10 mins)
- ✓ Social media data (10 mins)
- ✓ Discussion (10 mins)



How can we make Data 146 better for you?

**Next class**: Evaluation and benchmarking