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Why ML for healthcare?
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FDA 2021, Artificial Intelligence and Machine Learning (Al/ML)-Enabled Medical Devices 4



https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices

Why is machine learning for healthcare
challenging?



Why is machine learning for healthcare
challenging?
» Healthcare data are limited and sparse

 Data for prediction models can have over 50% of values missing.’
« Data sparsity can itself have patterns, e.g. time of lab test.?

» Treatment variation across hospitals and clinicians,3 even for
the same patient.*

» Healthcare knowledge changes all the time.
* 13% of medical practice papers are reversals.>

[1] Pantalone et al, Diabetes Medicine 2012; [2] Agniel et al, BMJ 2018; [3] Coburn et al, Breast Journal 2008; [4] Sporer et al, American
Academy of Orthopaedic Surgeons 2006; [5] Prasad et al, JAMA Internal Medicine 7



Why is equitable healthcare challenging?

« Healthcare system has existing health disparities, for example
maternal morbidity in Black women’

* Uneven sample sizes in data: 96% participants in GWAS
datasets are of European descent?

« Subpopulations can face differences in data distributions,
including differences in heart attack symptoms and care?®

» Biased systems and biased datasets create algorithmic bias*

[1] NYC Government, Maternal Morbidity Report; [2] Need and Goldstein, Trends in Genetics 2009; [3] Goldberg et
al, American Heart Journal 1998; [4] Obermeyer et al, Science 2019.



https://www1.nyc.gov/assets/doh/downloads/pdf/data/maternal-morbidity-report-08-12.pdf
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Problem Data Outcome Algorithm Post-Deployment
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Early detection for Collecting and Assessing different Correcting for 1. Bias auditing (AMA
intimate partner researching quality labels in patient access to Journal of Ethics
violence (PSB 2021) insurance risk intimate partner care (AAAI 2022) 2019, Nature
Treating health scores (ongoing) violence (ongoing) Medicine 2021)
disparities with Al 2. Mitigating algorithmic
(Nature Medicine bias (NeurlPS 2018)
2020)

Chen et al, “Ethical Machine Learning for Health Care,” Annual Reviews for Biomedical Data Science 2029 .
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Chen et al, “Ethical Machine Learning for Health Care,” Annual Reviews for Biomedical Data Science 2029.



Today’s Talk
£ ' 1. How can we decompose sources
— E) of discrimination? (NeurlPS 2018)

B

2. How can we proactively build
algorithms that account for
differences in access to care?

(AAAI 2022)




How can we decompose
—1°¥ sources of discrimination?

Chen, Johansson, Sontag, “Why is My Classifier Discriminatory?,” NeurlPS 2018.



Motivation: Risk Stratification for Clinical
Interventions

« Examples include APGAR score for newborns

* Risk stratification algorithms help clinicians choose
interventions in real-time

* However, risk scores face new scrutiny as some are shown to
generate divergent risk estimates for patients with identical
risk profiles but different races.



Intenswe Care Unlt Mortality Prediction
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Intensive Care Unit Mortality Prediction
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Zero-one loss



How do we define fairness?

» We define fairness in the context of loss
like false positive rate, false negative
rate, eftc.

» For outcome Y and prediction Y on data
D , zero-one loss is:

Va(Y,YV,D):=P,(Y #Y |A=0a)

 We can then formalize unfairness as
group differences.

C(Y) :=|v1 — vol




Bias, variance, and noise

Description How to fix

Bias How well model fits data Change model class

Variance | How much sample size Increase training data
affects accuracy size

Noise Error independent of model | Increase number of
class and sample size features
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Learned model
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Why might my classifier be unfair?
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Error from variance can be solved
by collecting more samples.
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Why might my classifier be unfair?

Learned model
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Why might my classifier be unfair?
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Why might my classifier be unfair?

Learned model &7
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Why might my classifier be unfair?

Learned model &7
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Why might my classifier be unfair?

True data function
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Error from bias can be solved by
changing the model class.
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Why might my classifier be unfair?

| earned model

model error
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Why might my classifier be unfair?
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Error from noise can be solved by
more informative feature spaces.



Contribution: Sources of unfairness

“unfairness”
['=[(By — By) + (V1—Vp) + (N;—Np)|
difference in bias difference in variances difference in noise

How can we realistically estimate B,, V,, and N,,?



Contribution: Estimation Techniques

of model class and
sample size

error with distance
metrics

Description How to estimate | How to fix

Bias How well model Experiment with Change model
fits data model complexity | class

Variance | How much sample | Fit inverse power | Increase training
size affects law from data size
accuracy subsampling

Noise Error independent | Estimate Bayes Increase number

of features

39



Mortality prediction from MIMIC-III clinical notes

By subsampling data,
we fit inverse power
laws to estimate the
benefit of more data
and reducing
variance.
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Mortality prediction from MIMIC-III clinical notes
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to reduce noise.
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Collaboration: Independence Blue Cross

 Partnership with Independence
Blue Cross, a health insurer
based in Philadelphia iIindependence

* Working to audit the case
management algorithms and
relevant subcomponents,
iIncluding likelihood of
hospitalization and high-risk
pregnancy

an
N
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How can we audit and address
algorithmic bias?

1. Decompose sources of discrimination into
statistical bias, variance, noise

2. Propose practical actions for detecting
these components and mitigating
discrimination

3. Techniques useful for other high-stakes
settings including finance data, education
data, or climate data



Machine Learning for Equitable Healthcare

1. Equity Audits for Machine Learning
Chen, Johansson, Sontag. (NeurlPS 2018)
Chen, Szolovits, Ghassemi. (AMA Journal of Ethics 2019)
Seyyed-Kalantari, Liu, McDermott, Chen, Ghassemi. (Nature Medicine 2021)
Chen, Agrawal, Horng, Sontag. (PSB 2020)

2. Machine Learning for Equity
Chen, Krishnan, Sontag. (AAAI 2022)
Chen, Joshi, Ghassemi. (Nature Medicine 2020)
Chen, Alsentzer, Park, Thomas, Gosangi, Gujrathi, Khurana. (PSB 2021)
Chen, Pierson, Rose, Joshi, Ferryman, Ghassemi. (Annual Reviews for
Biomedical Data Science 2021)




How can we build algorithms
that account for differences
INn access to care?

B

Chen, Krishnan, Sontag, “Clustering Interval-Censored Time-Series for Disease Phenotyping,” AAAl 202%



Systemic Health Disparities

 Disparities in access to care
» Rural hospitals closing, insurance coverage, trust in healthcare system,
medical adherence
 Disparities In treatment
« Different treatments for same conditions, same treatments for different
physiological systems
 Disparities in outcomes

* Life expectancy by socioeconomic status, maternal morbidity/mortality
by race



Motivation: Disease Subtyping

_ Triple-positive
. breast cancer

~

Triple-negative
breast cancer

47



Many diseases are biologically
heterogeneous despite a common diagnosis

Primary care asthma Secondary care asthma
Discordant

symptoms g
Early symptom . 4 Cor_wcordam .
predominant ™ disease '
'

Early-onset, atopic.
Normal BMI
High symptom expression.

Obese

non-eosinophilic
Later onset, female preponderance. .
High symptom expression. s* ﬁ@i
Symptoms L ot ¢

Py 2
4 &
-

Discordant
inflammation

Benign asthma
le-a

Inflammation predominant
Late onset, greater proportion of males.
Few daily symptoms but active eosinophilic
inflammation.

——— Eosinophilic inflammation —»

Asthma

Nissen et al, Journal of Asthma and Allergy 2018; Kohane et al, PLoS One, 2012; Mayo Clinic

Characterized
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SUBGROUP 1

SUBGROUP 2 SUBGROUP 3 SUBGROUP 4

Multisystem 197 Psychiatric 212 No 4,316

disorders disorders distinguishing
pattems in
comorbidity

Autism

Diastolic Systolic
. r

Stiff and thick
chambers

Stretched
and thin
chambers

Heart Failure
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Our goal is to find disease subtypes

* Subtypes are “similar” patients

» Subtypes are useful tools to design patient
treatments or expand understanding of human
health

* We want to account for systemic health
disparities

49



Patient A

Patient B

Patient C

|dealized health data

@00 o 00

Biomarker Severity
= Mild
® = Moderate
® = Severe

- oo

‘7
o0 O

Time Since
Disease Initiation
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Patient A

Patient B

Biomarker Severity

|dealized health data = Mild
® = Moderate
@® = Severe
o 0 0 O o

- oo o0 O

Time Since
Disease Initiation

A and B have very similar patient profiles! They
should be assigned to the same cluster. 51



Censoring Events Biomarker Severity

[ ]=Censoring = Mild
= Unobserved ® = Moderate
@® = Severe

Patient A {—H ’ ‘—]
Patient B { — “ ‘]
Patient C [‘—‘ m ]

Time Since
Disease Initiation

Data is collected in a censored interval for each patient

52



How can we learn disease subtyping?

« Option 1: Manually re-align the subtypes
- Clinician time is expensive
- Time-consuming for large datasets

« Option 2: Ignore alignment in learning subtypes
- Subtypes may learn interval censoring instead of biologically interesting
findings

« Option 3: Incorporate alignment into a statistical model used for

clustering
o Explicitly disentangle between subtype identity and alignment



How can we learn disease subtyping?

« Option 1: Manually re-align the subtypes
- Clinician time is expensive
- Time-consuming for large datasets

« Option 2: Ignore alignment in learning subtypes
- Subtypes may learn interval censoring instead of biologically
interesting findings

« Option 3: Incorporate alignment into a statistical model used for

clustering
o Explicitly disentangle between subtype identity and alignment



Censoring Events Biomarker Severity

[ ]=Censoring = Mild
= Unobserved ® = Moderate
@® = Severe

Patient A ~[. ‘ . ' ]
Patient B { — “ ‘]
Patient C {‘_‘ m 4]

Option 2: Assume time-series start at the
same stage of disease progression.

Time Since Entry
to Dataset

55



Censoring Events

[ ]=Censoring
= Unobserved

raenn (@ @ @ o ]
paiente | - CY o]

Option 2: We may inadvertently cluster
based on disease stage instead of
biologically interesting clusters.

Biomarker Severity
= Mild
® = Moderate
® = Severe

Time Since Entry
to Dataset

56



How can we learn disease subtyping?

« Option 1: Manually re-align the subtypes
- Clinician time is expensive
- Time-consuming for large datasets

« Option 2: Ignore alignment in learning subtypes
- Subtypes may learn interval censoring instead of biologically interesting
findings

« Option 3: Incorporate alignment into a statistical model used

for clustering
- Explicitly disentangle between subtype identity and alignment



SubLign is a deep generative model that
jointly learns patient subtype and alignment

PARKINSON'’S
[Tlmc Series \ PROGRESSION
MARKERS
/ L'lttm \ /Ahgnmcn\ P91 — P@g = 01 — 02 INITIATIVE
\Stl llCtUIC Z ' \ TlITlL é / Play a Part in Parkinson’s Research
. l for all ,
ﬁ Observations R Or a 91 ? 92 = @

:Tlmes x\l—b*éalues y\

\\ 4 \—//)

Variational inference to Identifiabili’%/ results Experiment results
: SUPNT show sufficient recover known clinical
approximate likelihood conditions findings

58



How can we model the clinical data?

x; i €10,10, NaN]
L :

Z.
O Glucose |# N--""~e~-"" _
Creatini 2
Y Y e Observed 5
BNP - S - 4 Ti X &
u Imes Observations: 1, ..., M
m 9
| é’\"“
Y L2
Glucose |.g_ ad B _ N
O .. = Biomarkers Y «2
- *
BNP - -o. " -
Irregularly Sampled £\

' ' i : - Observations: 1, ..., M
Multivariate Time-Series \ servations
Yijd € 0,1, NaN | 59




SubLign: Subtype and Alignment

et [@ @ @]
Patient B [ o00]

Disease Heterogeneity z

Similar patients are close together in latent representation space.
Subtypes can be found by clustering the continuous space.

60



SubLign: Subtype and Alignment

Patient A [—‘ ' '—]
| S
O
Patient B [ “—‘1
5
B

Alignment Value ¢

We want to learn heterogeneity that corrects for a
latent alignment value

61



| | Observed Times
SubLign Data Generation Biomarkers

Disease Heterogeneity Z

~ , X, 0
0 = g(2) Pe(ylz. . 9)

z~ N(0,I)

®
Alignment Value 0 Data Space



| | Observed Times
SubLign Representation Inference  Biomarkers

Disease Heterogeneity Z
CI(I) (Zl ) )

—_~

ZNC[¢(Z| ) P

Alignment Value 0 Data Space



SubLign Model Architecture

Observed Times

Observed Times

Biomarkers Biomarkers
Recurrent Neural Neural Network
Network Encoder Decoder
qe(z|x, ) 0; = g(2;)
q,(0]x,y) Vim = f(xim + 6;0;)

YV ~ Po (ylzr X, 6) 64



Identifiability: When can we recover the
correct subtypes?

Patient A [-o o oo @] s

Patient B [ o0 .] Subtype 1
Patient C [“ o 00 ] Subtype 2
Time Since
Disease Initiation
A, B, and C look so similar that it Censoring Events ~ Biomarker Severity
might be impossible to discover [ 1 = Censoring = Mild
the correct subtypes. = Unobserved ~ ® =Moderate .

@® = Severe



Identifiability: When can we recover the
correct subtypes?
* Theoretical question: Are there situations where

we can reliably disentangle subtype from alignment
time?



Identifiability: When can we recover the
correct subtypes?

* Theoretical question: Are there situations where
we can reliably disentangle subtype from alignment
time?

* Yes! We can prove identifiability under a noiseless,
parameterized version of SubLign

67



How do we evaluate SublLign?

True Clusters Learned Clusters

1. Clustering s
- Adjusted Rand index (ARI): quantitative measure of ﬂ{‘ Y
label concordance IR * X

« We lack ground truth in baseline data, so we use
baseline data (not included in SubLign) to validate
known clinical findings

2. Alignment
« Swaps metric: How many swaps to get values in
correct order, as a percent?

 Pearson correlation coefficient: How correlated are
the aligned values and the true values?

Learned Alignment Values

True Alignment Values



How well does Sublign recover cluster
and alignment values on synthetic data?

Cluster Alignment Alignment
performance performance performance

MODEL ARI 1 SWAPS | PEARSON 7




How well does Sublign recover cluster
and alignment values on synthetic data?

Cluster Alignment Alignment
performance performance performance
SubLign MODEL ARI 7 SWAPS | PEARSON 7
outperforms SubLign 0.94 + 0.02 0.09 +£ 0.00 0.85 £+ 0.04
deep SubNoLign 0.81 + 0.21 — —
generative

model without
alignment



How well does Sublign recover cluster
and alignment values on synthetic data?

Cluster Alignment Alignment
performance performance performance
SubLign MODEL ARI 7 SWAPS | PEARSON 7
outperforms SubLign 0.94 + 0.02 0.09 £ 0.00 0.85 + 0.04
greedy approach[
of clustering then& KMeans+Loss  0.67 & 0.04  0.21 £ 0.03  0.49 £ 0.01

aligning



How well does Sublign recover cluster
and alignment values on synthetic data?

Cluster Alignment Alignment
performance performance performance
MODEL ARI 1 SWAPS | PEARSON 7
SubLign 0.94 = 0.02 0.09 = 0.00 0.85 £ 0.04
SubLign
outperforms SuStaln 0.66 + 0.02 0.16 = 0.00  0.30 £ 0.02
algorithms [
assuming cross-&= PAGA 0.32 4+ 0.05 0.52 +£ 0.07  0.04 £+ 0.20

sectional data
and linear data



How well does Sublign recover cluster
and alignment values on synthetic data?

Cluster Alignment Alignment
performance performance performance
MODEL ARI 1 SWAPS | PEARSON 7
SubLign 0.94 +£ 0.02 0.09 £ 0.00 0.85 + 0.04
SubLign
outperforms
algorithm with [ BayLong 0.19 £ 0.18 0.48 £ 0.00 0.01 £ 0.02

Bayesian model
assumptions



How well does Sublign recover cluster
and alignment values on synthetic data?

Cluster Alignment Alignment
performance performance performance
SubLign MODEL ARI 7 SWAPS | PEARSON 7
outperforms =% SubLign 0.94 4+ 0.02 0.09 &+ 0.00 0.85 + 0.04
baselines! SubNoLign 0.81 £ 0.21 — —
KMeans+Loss 0.67 & 0.04 0.21 + 0.03 0.49 = 0.01
SuStaln 0.66 + 0.02 0.16 = 0.00 0.30 + 0.02
BayLong 0.19 £ 0.18 0.48 + 0.00 0.01 £ 0.02
PAGA 0.32 £ 0.05 0.52 £ 0.07  0.04 £+ 0.20

(Including 4 other baselines)



How well does SubLign recover cluster
and alignment values on clinical data?

Diastolic Systolic

 Observational data from
Beth Israel Deaconess
Medical Center (Boston)

* 1,534 heart failure patients
suffering from heart failure

« 12 features over time based
on on echocardiograms

- Validate subtypes based on
demographic and diagnosis
data




How well does SubLign recover cluster
and alignment values on clinical data?

Clusters learned by
SublLign are
reasonably sized

FEATURE A (674) B (444) C (416)




How well does SubLign recover cluster
and alignment values on clinical data?

FEATURE A (674) B (444) C (416)

11 features (of 24) are  no..

statistically significant  4nremia

Atherosclerosis

based on an ANOVA Atrial Fibrillation
test with p<o 05 with a Chronic Kidney Disease

) = Diastolic Heart Failure
Benjamini-Hochberg Obese
. Old Myocardial Infarction
correction Pulmonary Heart Disease
Systolic Heart Failure

77



How well does SubLign recover cluster
and alignment values on clinical data?

FEATURE A (674) B (444) C (416)

Age 75.98 74.73 69.43

W Female 0.71 0.23 0.43

e report Anemia 0.23 0.16 0.14
Atherosclerosis 0.28 0.34 0.40

C I uster means  Awia Fibilation 044 055 043
Chronic Kidney Disease 0.27 0.34 0.34

Diastolic Heart Failure 0.50 0.36 0.06

for eaCh Obese 0.56 0.65 0.46

Old Myocardial Infarction 0.12 0.14 0.24

fe at u re Pulmonary Heart Disease 0.29 0.22 0.19

Systolic Heart Failure 0.09 0.27 0.53




How well does SubLign recover cluster
and alignment values on clinical data?

Diastolic (A) and FEATURE A (674) B (444) C (416)
systolic (C) heart
failure are known

subtypes.

Diastolic Heart Failure 0.50 0.36 0.06

B has patient from
both diastolic and Systolic Heart Failure 0.00 027 053
systolic heart failure.

Shah et al, Phenomapping for novel classification of heart failure with preserved ejection fraction, Circulation 2014.
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How well does SubLign recover cluster
and alignment values on clinical data?

Clinical literature FEATURE A (674) B (444) C (416)
SuggeStS that Female 0.71 0.23 0.43
women' and obese?
patients may
manifest heart failure
. Obese 0.56 0.65 0.46
differently

[1] Duca et al, Scientific Reports 2018. [2] Tadic and Cuspidi, Heart Failure Reviews 2019.
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How well does SubLign recover cluster
and alignment values on clinical data?

Article | Open Access | Published: 18 January 2018

Clinical literature Gender-related differences in heart failure with
preserved ejection fraction

S u g g eStS th at Franz Duca, Caroline Zotter-Tufaro, Andreas A. Kammerlander, Stefan Aschauer, Christina Binder, Julia
Wo m e n 1 a n d 0 beSQZ Mascherbauer & Diana Bonderman =]

Scientific Reports 8, Article number: 1080 (2018) | Cite this article

patients may 3722 Accesses | 30 Citations |M
manifest heart failure

d |ffe re ntly Obesity and heart failure with preserved ejection
fraction: a paradox or something else?

Review > Heart Fail Rev. 2019 May;24(3):379-385. doi: 10.1007/s10741-018-09766-x.

Marijana Tadic 1, Cesare Cuspidi 2

Affiliations + expand
PMID: 30610456 DOI: 10.1007/s10741-018-09766-x

[1] Duca et al, Scientific Reports 2018. [2] Tadic and Cuspidi, Heart Failure Reviews 2019.
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How can we accommodate differences In
access to care”?

1. Model access to care as a latent variable

2. Design deep generative model to infer disease
subtyping and alignment

3. Prove conditions under which disease subtyping
IS identifiable

4. Algorithm improves over baselines in synthetic
setting and validates known subtypes on real-
world data



Machine Learning for Equitable Healthcare

Problem Data Outcome Algorithm Post-Deployment
Selection Collection Definition Development Considerations
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intimate partner researching quality labels in patient access to Journal of Ethics
violence (PSB 2021) insurance risk intimate partner care (AAAI 2022) 2019, Nature
Treating health scores (ongoing) violence (ongoing) Medicine 2021)
disparities with Al 2. Mitigating algorithmic
(Nature Medicine bias (NeurlPS 2018)
2020)

Chen et al, “Ethical Machine Learning for Health Care,” Annual Reviews for Biomedical Data Science 2023 .
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