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38 in first half of 2021

Electronic Medical 
Records

Wearable Data
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https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices


Why is machine learning for healthcare 
challenging?

5



Why is machine learning for healthcare 
challenging?
• Healthcare data are limited and sparse
• Data for prediction models can have over 50% of values missing.1
• Data sparsity can itself have patterns, e.g. time of lab test.2

• Treatment variation across hospitals and clinicians,3 even for 
the same patient.4

• Healthcare knowledge changes all the time.
• 13% of medical practice papers are reversals.5

7
[1] Pantalone et al, Diabetes Medicine 2012; [2] Agniel et al, BMJ 2018; [3] Coburn et al, Breast Journal 2008; [4] Sporer et al, American 
Academy of Orthopaedic Surgeons 2006; [5] Prasad et al, JAMA Internal Medicine



Why is equitable healthcare challenging?
• Healthcare system has existing health disparities, for example 

maternal morbidity in Black women1

• Uneven sample sizes in data: 96% participants in GWAS 
datasets are of European descent2

• Subpopulations can face differences in data distributions, 
including differences in heart attack symptoms and care3

• Biased systems and biased datasets create algorithmic bias4

[1] NYC Government, Maternal Morbidity Report; [2] Need and Goldstein, Trends in Genetics 2009; [3] Goldberg et 
al, American Heart Journal 1998; [4] Obermeyer et al, Science 2019.

https://www1.nyc.gov/assets/doh/downloads/pdf/data/maternal-morbidity-report-08-12.pdf


Machine Learning for Equitable Healthcare

Chen et al, “Ethical Machine Learning for Health Care,” Annual Reviews for Biomedical Data Science 2021.

1. Early detection for 
intimate partner 
violence (PSB 2021)

2. Treating health 
disparities with AI 
(Nature Medicine 
2020)

Correcting for 
patient access to 
care (AAAI 2022)

1. Bias auditing (AMA 
Journal of Ethics 
2019, Nature 
Medicine 2021)

2. Mitigating algorithmic 
bias (NeurIPS 2018)

Collecting and 
researching 
insurance risk 
scores (ongoing)

Assessing different 
quality labels in 
intimate partner 
violence (ongoing)
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Machine Learning for Equitable Healthcare

Chen et al, “Ethical Machine Learning for Health Care,” Annual Reviews for Biomedical Data Science 2021.10



Today’s Talk

1. How can we decompose sources
of discrimination? (NeurIPS 2018)

2. How can we proactively build 
algorithms that account for 
differences in access to care? 
(AAAI 2022)
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How can we decompose 
sources of discrimination?

12Chen, Johansson, Sontag, “Why is My Classifier Discriminatory?,” NeurIPS 2018.



Motivation: Risk Stratification for Clinical 
Interventions
• Examples include APGAR score for newborns

• Risk stratification algorithms help clinicians choose 
interventions in real-time

• However, risk scores face new scrutiny as some are shown to 
generate divergent risk estimates for patients with identical 
risk profiles but different races.
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Intensive Care Unit Mortality Prediction
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Intensive Care Unit Mortality Prediction
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How do we define fairness?
• We define fairness in the context of loss 

like false positive rate, false negative 
rate, etc. 
• For outcome Y and prediction !𝑌 on data 
D , zero-one loss is:

𝛾! !𝑌, 𝑌, 𝐷 ∶= 𝑃" !𝑌 ≠ 𝑌 𝐴 = 𝑎)

• We can then formalize unfairness as 
group differences.

-Γ !𝑌 ∶= | 𝛾# − 𝛾$|
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Bias, variance, and noise

Description How to fix

Bias How well model fits data Change model class

Variance How much sample size 
affects accuracy

Increase training data 
size

Noise Error independent of model 
class and sample size

Increase number of 
features

17



Why might my classifier be unfair?
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Why might my classifier be unfair?

True data function
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True data function
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Why might my classifier be unfair?

Learned model
True data function
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Error from variance can be solved 
by collecting more samples.
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Learned model



Orange dot model error

29

Why might my classifier be unfair?

Learned model



Blue dot model error
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Orange dot model error

Why might my classifier be unfair?

Learned model



Why might my classifier be unfair?

True data function

𝒚 = 𝟎. 𝟓𝒙𝟐

𝒚 = 𝒙 − 𝟏
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Why might my classifier be unfair?

True data function

𝒚 = 𝟎. 𝟓𝒙𝟐

𝒚 = 𝒙 − 𝟏

Error from bias can be solved by 
changing the model class.
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Why might my classifier be unfair?
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Why might my classifier be unfair?

Learned model
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Why might my classifier be unfair?

Learned model
Orange dot model error
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Why might my classifier be unfair?

Learned model
Orange dot model error

Blue dot model error
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Why might my classifier be unfair?

Learned model
Orange dot model error

Blue dot model error
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Error from noise can be solved by 
more informative feature spaces.



Contribution: Sources of unfairness

!Γ = ( !𝐵! − !𝐵" + (!𝑉!−!𝑉") + (*𝑁!−*𝑁")|

How can we realistically estimate !𝐵!, !𝑉!, and $𝑁!?

“unfairness”

difference in bias difference in variances difference in noise

38



Contribution: Estimation Techniques

Description How to estimate How to fix

Bias How well model 
fits data

Experiment with 
model complexity

Change model 
class

Variance How much sample 
size affects
accuracy

Fit inverse power 
law from 
subsampling

Increase training 
data size

Noise Error independent 
of model class and 
sample size

Estimate Bayes 
error with distance 
metrics

Increase number 
of features
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By subsampling data, 
we fit inverse power 
laws to estimate the 
benefit of more data 
and reducing 
variance.
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Cancer patients Cardiac patients
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Using topic modeling, 
we identified
subpopulations to 
gather more features 
to reduce noise.
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Collaboration: Independence Blue Cross

• Partnership with Independence 
Blue Cross, a health insurer 
based in Philadelphia

• Working to audit the case 
management algorithms and 
relevant subcomponents, 
including likelihood of 
hospitalization and high-risk 
pregnancy

42



How can we audit and address 
algorithmic bias?

1. Decompose sources of discrimination into 
statistical bias, variance, noise

2. Propose practical actions for detecting 
these components and mitigating 
discrimination

3. Techniques useful for other high-stakes 
settings including finance data, education 
data, or climate data

43



Machine Learning for Equitable Healthcare

1. Equity Audits for Machine Learning
Chen, Johansson, Sontag. (NeurIPS 2018)
Chen, Szolovits, Ghassemi. (AMA Journal of Ethics 2019)
Seyyed-Kalantari, Liu, McDermott, Chen, Ghassemi. (Nature Medicine 2021)
Chen, Agrawal, Horng, Sontag. (PSB 2020)

2. Machine Learning for Equity
Chen, Krishnan, Sontag. (AAAI 2022)
Chen, Joshi, Ghassemi. (Nature Medicine 2020)
Chen, Alsentzer, Park, Thomas, Gosangi, Gujrathi, Khurana. (PSB 2021)
Chen, Pierson, Rose, Joshi, Ferryman, Ghassemi. (Annual Reviews for 

Biomedical Data Science 2021)
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How can we build algorithms 
that account for differences 
in access to care?

45Chen, Krishnan, Sontag, “Clustering Interval-Censored Time-Series for Disease Phenotyping,” AAAI 2022.



Systemic Health Disparities
• Disparities in access to care
• Rural hospitals closing, insurance coverage, trust in healthcare system, 

medical adherence
• Disparities in treatment
• Different treatments for same conditions, same treatments for different 

physiological systems
• Disparities in outcomes
• Life expectancy by socioeconomic status, maternal morbidity/mortality 

by race

46



Motivation: Disease Subtyping
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Many diseases are biologically 
heterogeneous despite a common diagnosis

AutismAsthma Heart Failure

Nissen et al, Journal of Asthma and Allergy 2018; Kohane et al, PLoS One, 2012; Mayo Clinic 48



Our goal is to find disease subtypes

•Subtypes are “similar” patients

•Subtypes are useful tools to design patient 
treatments or expand understanding of human 
health

•We want to account for systemic health 
disparities

49



Idealized health data

Time Since 
Disease Initiation

Patient A

= Mild
= Moderate
= Severe
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Biomarker Severity

Patient B

Patient C



Patient A

= Mild
= Moderate
= Severe
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Biomarker Severity

Patient B

A and B have very similar patient profiles! They 
should be assigned to the same cluster. 

Idealized health data

Time Since 
Disease Initiation

Patient C



Patient C

Patient A

= Mild
= Moderate
= Severe
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Biomarker Severity

Patient B

= Censoring[  ]
= Unobserved

Censoring Events

[ ]
][

Data is collected in a censored interval for each patient

[ ]
Time Since 

Disease Initiation



How can we learn disease subtyping?
● Option 1: Manually re-align the subtypes 

○ Clinician time is expensive 
○ Time-consuming for large datasets

● Option 2: Ignore alignment in learning subtypes
○ Subtypes may learn interval censoring instead of biologically interesting 

findings

● Option 3: Incorporate alignment into a statistical model used for 
clustering
○ Explicitly disentangle between subtype identity and alignment

53



How can we learn disease subtyping?
● Option 1: Manually re-align the subtypes 

○ Clinician time is expensive 
○ Time-consuming for large datasets

● Option 2: Ignore alignment in learning subtypes
○ Subtypes may learn interval censoring instead of biologically 

interesting findings

● Option 3: Incorporate alignment into a statistical model used for 
clustering
○ Explicitly disentangle between subtype identity and alignment
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= Mild
= Moderate
= Severe
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Biomarker Severity
= Censoring[  ]
= Unobserved

Censoring Events

[ ]
[ ]

[ ]
Time Since Entry 

to Dataset

Patient C

Patient B

Option 2: Assume time-series start at the 
same stage of disease progression.

Patient A



= Mild
= Moderate
= Severe
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Biomarker Severity
= Censoring
= Unobserved

Censoring Events

Time Since Entry 
to Dataset

Patient C

Patient B

Option 2: We may inadvertently cluster 
based on disease stage instead of 

biologically interesting clusters.

Patient A

[  ]
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How can we learn disease subtyping?
● Option 1: Manually re-align the subtypes 

○ Clinician time is expensive 
○ Time-consuming for large datasets

● Option 2: Ignore alignment in learning subtypes
○ Subtypes may learn interval censoring instead of biologically interesting 

findings

● Option 3: Incorporate alignment into a statistical model used 
for clustering
○ Explicitly disentangle between subtype identity and alignment
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SubLign is a deep generative model that 
jointly learns patient subtype and alignment

Variational inference to 
approximate likelihood

Identifiability results 
show sufficient 

conditions

Experiment results 
recover known clinical 

findings
58



How can we model the clinical data?
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SubLign: Subtype and Alignment

60

Patient A

Similar patients are close together in latent representation space. 
Subtypes can be found by clustering the continuous space.

[ ]

Disease Heterogeneity z

𝑧!
𝑧"

Patient B [ ]



𝑧!
𝑧"

SubLign: Subtype and Alignment
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Patient A

Patient B

Alignment Value 𝛿

[ ]

[ ]
𝛿"

𝛿!

We want to learn heterogeneity that corrects for a 
latent alignment value
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Data SpaceAlignment Value 𝜹

Disease Heterogeneity z

SubLign Data Generation

𝒚 ∼ 𝑝# +𝒚|𝒛, 𝒙, 𝜹

𝒛~ 𝑁(0, 𝕀)

Observed Times X
Biomarkers Y

𝑦$,& = 𝑓 𝑥$,& + 𝛿$; Θ$
Θ' = 𝑔(𝑧$)
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Data SpaceAlignment Value 𝜹

Disease Heterogeneity z

SubLign Representation Inference

𝑞((𝒛|𝒙, 𝒚)

𝒚 ∼ 𝑝# 𝒚|𝒛, 𝒙, 𝜹

𝒛~𝑞((𝒛|𝒙, 𝒚)
𝑞)(𝜹|𝒙, 𝒚)

Observed Times X
Biomarkers Y
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SubLign Model Architecture

Recurrent Neural 
Network Encoder

𝑞!(𝒛|𝒙, 𝒚)
𝑞"(𝜹|𝒙, 𝒚)

X
Observed Times

Y
Biomarkers

X
Observed Times

Y
Biomarkers

Neural Network 
Decoder
Θ# = 𝑔(𝑧$)

𝑦$,& = 𝑓 𝑥$,& + 𝛿$; Θ$
𝒚 ∼ 𝑝' 6𝒚|𝒛, 𝒙, 𝜹

𝜇( 𝑥, 𝑦

𝛿

𝜎((𝑥, 𝑦)
𝑧



Patient C

Patient A

= Mild
= Moderate
= Severe 65

Biomarker Severity

Patient B

= Censoring[ ]
= Unobserved

Censoring Events

[ ]
][

[ ]
Time Since 

Disease Initiation

Identifiability: When can we recover the 
correct subtypes?

A, B, and C look so similar that it 
might be impossible to discover 

the correct subtypes.

Subtype 1

Subtype 2

Subtype 1



Identifiability: When can we recover the 
correct subtypes?
•Theoretical question: Are there situations where 
we can reliably disentangle subtype from alignment 
time? 

66



Identifiability: When can we recover the 
correct subtypes?
•Theoretical question: Are there situations where 
we can reliably disentangle subtype from alignment 
time? 

•Yes! We can prove identifiability under a noiseless, 
parameterized version of SubLign

67



How do we evaluate SubLign?
1. Clustering

• Adjusted Rand index (ARI): quantitative measure of 
label concordance

• We lack ground truth in baseline data, so we use 
baseline data (not included in SubLign) to validate 
known clinical findings

2. Alignment
• Swaps metric: How many swaps to get values in 

correct order, as a percent?
• Pearson correlation coefficient: How correlated are 

the aligned values and the true values?

68
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How well does SubLign recover cluster 
and alignment values on synthetic data?

Model ARI " Swaps # Pearson "

SubLign 0.94 ± 0.02 0.09 ± 0.00 0.85 ± 0.04
SubNoLign 0.81 ± 0.21 – –
KMeans+Loss 0.67 ± 0.04 0.21 ± 0.03 0.49 ± 0.01
SuStaIn 0.66 ± 0.02 0.16 ± 0.00 0.30 ± 0.02
BayLong 0.19 ± 0.18 0.48 ± 0.00 0.01 ± 0.02
PAGA 0.32 ± 0.05 0.52 ± 0.07 0.04 ± 0.20
Soft-DTW 0.06 ± 0.01 – –
Kernel-DTW 0.06 ± 0.07 – –
SPARTan 0.22 ± 0.18 – –

(a)

Model ARI

SubLign 0.58 ± 0.12
SubNoLign 0.42 ± 0.14
KMeans+Loss 0.05 ± 0.04
SuStaIn 0.12 ± 0.11
BayLong 0.04 ± 0.17
PAGA 0.02 ± 0.02
Soft-DTW 0.46 ± 0.43
Kernel-DTW 0.21 ± 0.36
SPARTan 0.15 ± 0.10

(b)

Figure 2: Means and standard deviations over 5 trials for: (a) synthetic sigmoid dataset with
1000 patients, 3 dimensions, and 4 observations per patient, (b) 619 patients in the PPMI dataset
including 423 Parkinson’s disease patients and 196 healthy controls. Baseline methods include
SuStaIn [Young et al., 2018], BayLong [Huopaniemi et al., 2014], PAGA [Wolf et al., 2019], Soft-
DTW [Cuturi, 2011], Kernel-DTW [Dhillon et al., 2004], and SPARTan [Perros et al., 2017].

5.2 Evaluation

We evaluate models on 5 trials, each with a different randomized data split and random seed. For
each trial, we learn on a training set (60%), find the best performance across all hyperparameters on
the validation set (20%), and report the performance metrics on the held-out test set (20%). The
same data folds are used across all models for each trial.

We report the performance on the test set over three metrics. Adjusted Rand index (ARI) measures
whether pairs of samples are correctly assigned in the same or different subtypes [Hubert and Arabie, 1985].
The Swaps metric reports the number of swaps needed to sort the predicted disease times into
the true disease stages, expressed as percentage of total possible swaps, with full equation in the
appendix. The Pearson correlation coefficient expresses correlation between the predicted and true
disease stage. ARI measures the clustering performance while the Swaps metric and the Pearson
correlation coefficient quantify how well the learning algorithm infers the alignment values.

Quantitative metrics on clinical datasets: Because real world data often lack ground truth
labels for subtype or alignment, we create two semi-synthetic experiments with clinical datasets. For
HF, we evaluate SubLign’s ability to infer relative disease stage by introducing additional censoring
into the test sets. Specifically, we train SubLign using 80% data (train and validation data) as
usual. We then modify the remaining data (20%) by removing the first year of patient observations,
creating distorted test set (X 0, Y 0), and by removing the last year of patient observations, creating
(X 00, Y 00). The same amounts of observations are removed from each set to control for length of
observations. We infer alignment values using the trained SubLign model: �0 from (X 0, Y 0) and �00

from (X 00, Y 00). By construction, �0 > �00. We report the percentage of patients for which SubLign is
able to recover this relationship. For PD, we report the held-out clustering performance for healthy
control patients and patients with PD. We use disease status (PD patient or healthy control) as
labels and K = 2 subtypes.

10

Cluster 
performance

Alignment 
performance

Alignment 
performance
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How well does SubLign recover cluster 
and alignment values on synthetic data?
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Figure 2: Means and standard deviations over 5 trials for: (a) synthetic sigmoid dataset with
1000 patients, 3 dimensions, and 4 observations per patient, (b) 619 patients in the PPMI dataset
including 423 Parkinson’s disease patients and 196 healthy controls. Baseline methods include
SuStaIn [Young et al., 2018], BayLong [Huopaniemi et al., 2014], PAGA [Wolf et al., 2019], Soft-
DTW [Cuturi, 2011], Kernel-DTW [Dhillon et al., 2004], and SPARTan [Perros et al., 2017].

5.2 Evaluation

We evaluate models on 5 trials, each with a different randomized data split and random seed. For
each trial, we learn on a training set (60%), find the best performance across all hyperparameters on
the validation set (20%), and report the performance metrics on the held-out test set (20%). The
same data folds are used across all models for each trial.

We report the performance on the test set over three metrics. Adjusted Rand index (ARI) measures
whether pairs of samples are correctly assigned in the same or different subtypes [Hubert and Arabie, 1985].
The Swaps metric reports the number of swaps needed to sort the predicted disease times into
the true disease stages, expressed as percentage of total possible swaps, with full equation in the
appendix. The Pearson correlation coefficient expresses correlation between the predicted and true
disease stage. ARI measures the clustering performance while the Swaps metric and the Pearson
correlation coefficient quantify how well the learning algorithm infers the alignment values.

Quantitative metrics on clinical datasets: Because real world data often lack ground truth
labels for subtype or alignment, we create two semi-synthetic experiments with clinical datasets. For
HF, we evaluate SubLign’s ability to infer relative disease stage by introducing additional censoring
into the test sets. Specifically, we train SubLign using 80% data (train and validation data) as
usual. We then modify the remaining data (20%) by removing the first year of patient observations,
creating distorted test set (X 0, Y 0), and by removing the last year of patient observations, creating
(X 00, Y 00). The same amounts of observations are removed from each set to control for length of
observations. We infer alignment values using the trained SubLign model: �0 from (X 0, Y 0) and �00

from (X 00, Y 00). By construction, �0 > �00. We report the percentage of patients for which SubLign is
able to recover this relationship. For PD, we report the held-out clustering performance for healthy
control patients and patients with PD. We use disease status (PD patient or healthy control) as
labels and K = 2 subtypes.
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How well does SubLign recover cluster 
and alignment values on synthetic data?

Model ARI " Swaps # Pearson "

SubLign 0.94 ± 0.02 0.09 ± 0.00 0.85 ± 0.04
SubNoLign 0.81 ± 0.21 – –
KMeans+Loss 0.67 ± 0.04 0.21 ± 0.03 0.49 ± 0.01
SuStaIn 0.66 ± 0.02 0.16 ± 0.00 0.30 ± 0.02
BayLong 0.19 ± 0.18 0.48 ± 0.00 0.01 ± 0.02
PAGA 0.32 ± 0.05 0.52 ± 0.07 0.04 ± 0.20
Soft-DTW 0.06 ± 0.01 – –
Kernel-DTW 0.06 ± 0.07 – –
SPARTan 0.22 ± 0.18 – –

(a)
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Figure 2: Means and standard deviations over 5 trials for: (a) synthetic sigmoid dataset with
1000 patients, 3 dimensions, and 4 observations per patient, (b) 619 patients in the PPMI dataset
including 423 Parkinson’s disease patients and 196 healthy controls. Baseline methods include
SuStaIn [Young et al., 2018], BayLong [Huopaniemi et al., 2014], PAGA [Wolf et al., 2019], Soft-
DTW [Cuturi, 2011], Kernel-DTW [Dhillon et al., 2004], and SPARTan [Perros et al., 2017].

5.2 Evaluation

We evaluate models on 5 trials, each with a different randomized data split and random seed. For
each trial, we learn on a training set (60%), find the best performance across all hyperparameters on
the validation set (20%), and report the performance metrics on the held-out test set (20%). The
same data folds are used across all models for each trial.

We report the performance on the test set over three metrics. Adjusted Rand index (ARI) measures
whether pairs of samples are correctly assigned in the same or different subtypes [Hubert and Arabie, 1985].
The Swaps metric reports the number of swaps needed to sort the predicted disease times into
the true disease stages, expressed as percentage of total possible swaps, with full equation in the
appendix. The Pearson correlation coefficient expresses correlation between the predicted and true
disease stage. ARI measures the clustering performance while the Swaps metric and the Pearson
correlation coefficient quantify how well the learning algorithm infers the alignment values.

Quantitative metrics on clinical datasets: Because real world data often lack ground truth
labels for subtype or alignment, we create two semi-synthetic experiments with clinical datasets. For
HF, we evaluate SubLign’s ability to infer relative disease stage by introducing additional censoring
into the test sets. Specifically, we train SubLign using 80% data (train and validation data) as
usual. We then modify the remaining data (20%) by removing the first year of patient observations,
creating distorted test set (X 0, Y 0), and by removing the last year of patient observations, creating
(X 00, Y 00). The same amounts of observations are removed from each set to control for length of
observations. We infer alignment values using the trained SubLign model: �0 from (X 0, Y 0) and �00

from (X 00, Y 00). By construction, �0 > �00. We report the percentage of patients for which SubLign is
able to recover this relationship. For PD, we report the held-out clustering performance for healthy
control patients and patients with PD. We use disease status (PD patient or healthy control) as
labels and K = 2 subtypes.
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How well does SubLign recover cluster 
and alignment values on synthetic data?

Model ARI " Swaps # Pearson "

SubLign 0.94 ± 0.02 0.09 ± 0.00 0.85 ± 0.04
SubNoLign 0.81 ± 0.21 – –
KMeans+Loss 0.67 ± 0.04 0.21 ± 0.03 0.49 ± 0.01
SuStaIn 0.66 ± 0.02 0.16 ± 0.00 0.30 ± 0.02
BayLong 0.19 ± 0.18 0.48 ± 0.00 0.01 ± 0.02
PAGA 0.32 ± 0.05 0.52 ± 0.07 0.04 ± 0.20
Soft-DTW 0.06 ± 0.01 – –
Kernel-DTW 0.06 ± 0.07 – –
SPARTan 0.22 ± 0.18 – –

(a)

Model ARI

SubLign 0.58 ± 0.12
SubNoLign 0.42 ± 0.14
KMeans+Loss 0.05 ± 0.04
SuStaIn 0.12 ± 0.11
BayLong 0.04 ± 0.17
PAGA 0.02 ± 0.02
Soft-DTW 0.46 ± 0.43
Kernel-DTW 0.21 ± 0.36
SPARTan 0.15 ± 0.10

(b)

Figure 2: Means and standard deviations over 5 trials for: (a) synthetic sigmoid dataset with
1000 patients, 3 dimensions, and 4 observations per patient, (b) 619 patients in the PPMI dataset
including 423 Parkinson’s disease patients and 196 healthy controls. Baseline methods include
SuStaIn [Young et al., 2018], BayLong [Huopaniemi et al., 2014], PAGA [Wolf et al., 2019], Soft-
DTW [Cuturi, 2011], Kernel-DTW [Dhillon et al., 2004], and SPARTan [Perros et al., 2017].

5.2 Evaluation

We evaluate models on 5 trials, each with a different randomized data split and random seed. For
each trial, we learn on a training set (60%), find the best performance across all hyperparameters on
the validation set (20%), and report the performance metrics on the held-out test set (20%). The
same data folds are used across all models for each trial.

We report the performance on the test set over three metrics. Adjusted Rand index (ARI) measures
whether pairs of samples are correctly assigned in the same or different subtypes [Hubert and Arabie, 1985].
The Swaps metric reports the number of swaps needed to sort the predicted disease times into
the true disease stages, expressed as percentage of total possible swaps, with full equation in the
appendix. The Pearson correlation coefficient expresses correlation between the predicted and true
disease stage. ARI measures the clustering performance while the Swaps metric and the Pearson
correlation coefficient quantify how well the learning algorithm infers the alignment values.

Quantitative metrics on clinical datasets: Because real world data often lack ground truth
labels for subtype or alignment, we create two semi-synthetic experiments with clinical datasets. For
HF, we evaluate SubLign’s ability to infer relative disease stage by introducing additional censoring
into the test sets. Specifically, we train SubLign using 80% data (train and validation data) as
usual. We then modify the remaining data (20%) by removing the first year of patient observations,
creating distorted test set (X 0, Y 0), and by removing the last year of patient observations, creating
(X 00, Y 00). The same amounts of observations are removed from each set to control for length of
observations. We infer alignment values using the trained SubLign model: �0 from (X 0, Y 0) and �00

from (X 00, Y 00). By construction, �0 > �00. We report the percentage of patients for which SubLign is
able to recover this relationship. For PD, we report the held-out clustering performance for healthy
control patients and patients with PD. We use disease status (PD patient or healthy control) as
labels and K = 2 subtypes.
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How well does SubLign recover cluster 
and alignment values on synthetic data?

Model ARI " Swaps # Pearson "

SubLign 0.94 ± 0.02 0.09 ± 0.00 0.85 ± 0.04
SubNoLign 0.81 ± 0.21 – –
KMeans+Loss 0.67 ± 0.04 0.21 ± 0.03 0.49 ± 0.01
SuStaIn 0.66 ± 0.02 0.16 ± 0.00 0.30 ± 0.02
BayLong 0.19 ± 0.18 0.48 ± 0.00 0.01 ± 0.02
PAGA 0.32 ± 0.05 0.52 ± 0.07 0.04 ± 0.20
Soft-DTW 0.06 ± 0.01 – –
Kernel-DTW 0.06 ± 0.07 – –
SPARTan 0.22 ± 0.18 – –

(a)

Model ARI

SubLign 0.58 ± 0.12
SubNoLign 0.42 ± 0.14
KMeans+Loss 0.05 ± 0.04
SuStaIn 0.12 ± 0.11
BayLong 0.04 ± 0.17
PAGA 0.02 ± 0.02
Soft-DTW 0.46 ± 0.43
Kernel-DTW 0.21 ± 0.36
SPARTan 0.15 ± 0.10

(b)

Figure 2: Means and standard deviations over 5 trials for: (a) synthetic sigmoid dataset with
1000 patients, 3 dimensions, and 4 observations per patient, (b) 619 patients in the PPMI dataset
including 423 Parkinson’s disease patients and 196 healthy controls. Baseline methods include
SuStaIn [Young et al., 2018], BayLong [Huopaniemi et al., 2014], PAGA [Wolf et al., 2019], Soft-
DTW [Cuturi, 2011], Kernel-DTW [Dhillon et al., 2004], and SPARTan [Perros et al., 2017].

5.2 Evaluation

We evaluate models on 5 trials, each with a different randomized data split and random seed. For
each trial, we learn on a training set (60%), find the best performance across all hyperparameters on
the validation set (20%), and report the performance metrics on the held-out test set (20%). The
same data folds are used across all models for each trial.

We report the performance on the test set over three metrics. Adjusted Rand index (ARI) measures
whether pairs of samples are correctly assigned in the same or different subtypes [Hubert and Arabie, 1985].
The Swaps metric reports the number of swaps needed to sort the predicted disease times into
the true disease stages, expressed as percentage of total possible swaps, with full equation in the
appendix. The Pearson correlation coefficient expresses correlation between the predicted and true
disease stage. ARI measures the clustering performance while the Swaps metric and the Pearson
correlation coefficient quantify how well the learning algorithm infers the alignment values.

Quantitative metrics on clinical datasets: Because real world data often lack ground truth
labels for subtype or alignment, we create two semi-synthetic experiments with clinical datasets. For
HF, we evaluate SubLign’s ability to infer relative disease stage by introducing additional censoring
into the test sets. Specifically, we train SubLign using 80% data (train and validation data) as
usual. We then modify the remaining data (20%) by removing the first year of patient observations,
creating distorted test set (X 0, Y 0), and by removing the last year of patient observations, creating
(X 00, Y 00). The same amounts of observations are removed from each set to control for length of
observations. We infer alignment values using the trained SubLign model: �0 from (X 0, Y 0) and �00

from (X 00, Y 00). By construction, �0 > �00. We report the percentage of patients for which SubLign is
able to recover this relationship. For PD, we report the held-out clustering performance for healthy
control patients and patients with PD. We use disease status (PD patient or healthy control) as
labels and K = 2 subtypes.
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How well does SubLign recover cluster 
and alignment values on synthetic data?

Model ARI " Swaps # Pearson "

SubLign 0.94 ± 0.02 0.09 ± 0.00 0.85 ± 0.04
SubNoLign 0.81 ± 0.21 – –
KMeans+Loss 0.67 ± 0.04 0.21 ± 0.03 0.49 ± 0.01
SuStaIn 0.66 ± 0.02 0.16 ± 0.00 0.30 ± 0.02
BayLong 0.19 ± 0.18 0.48 ± 0.00 0.01 ± 0.02
PAGA 0.32 ± 0.05 0.52 ± 0.07 0.04 ± 0.20
Soft-DTW 0.06 ± 0.01 – –
Kernel-DTW 0.06 ± 0.07 – –
SPARTan 0.22 ± 0.18 – –

(a)

Model ARI

SubLign 0.58 ± 0.12
SubNoLign 0.42 ± 0.14
KMeans+Loss 0.05 ± 0.04
SuStaIn 0.12 ± 0.11
BayLong 0.04 ± 0.17
PAGA 0.02 ± 0.02
Soft-DTW 0.46 ± 0.43
Kernel-DTW 0.21 ± 0.36
SPARTan 0.15 ± 0.10

(b)

Figure 2: Means and standard deviations over 5 trials for: (a) synthetic sigmoid dataset with
1000 patients, 3 dimensions, and 4 observations per patient, (b) 619 patients in the PPMI dataset
including 423 Parkinson’s disease patients and 196 healthy controls. Baseline methods include
SuStaIn [Young et al., 2018], BayLong [Huopaniemi et al., 2014], PAGA [Wolf et al., 2019], Soft-
DTW [Cuturi, 2011], Kernel-DTW [Dhillon et al., 2004], and SPARTan [Perros et al., 2017].

5.2 Evaluation

We evaluate models on 5 trials, each with a different randomized data split and random seed. For
each trial, we learn on a training set (60%), find the best performance across all hyperparameters on
the validation set (20%), and report the performance metrics on the held-out test set (20%). The
same data folds are used across all models for each trial.

We report the performance on the test set over three metrics. Adjusted Rand index (ARI) measures
whether pairs of samples are correctly assigned in the same or different subtypes [Hubert and Arabie, 1985].
The Swaps metric reports the number of swaps needed to sort the predicted disease times into
the true disease stages, expressed as percentage of total possible swaps, with full equation in the
appendix. The Pearson correlation coefficient expresses correlation between the predicted and true
disease stage. ARI measures the clustering performance while the Swaps metric and the Pearson
correlation coefficient quantify how well the learning algorithm infers the alignment values.

Quantitative metrics on clinical datasets: Because real world data often lack ground truth
labels for subtype or alignment, we create two semi-synthetic experiments with clinical datasets. For
HF, we evaluate SubLign’s ability to infer relative disease stage by introducing additional censoring
into the test sets. Specifically, we train SubLign using 80% data (train and validation data) as
usual. We then modify the remaining data (20%) by removing the first year of patient observations,
creating distorted test set (X 0, Y 0), and by removing the last year of patient observations, creating
(X 00, Y 00). The same amounts of observations are removed from each set to control for length of
observations. We infer alignment values using the trained SubLign model: �0 from (X 0, Y 0) and �00

from (X 00, Y 00). By construction, �0 > �00. We report the percentage of patients for which SubLign is
able to recover this relationship. For PD, we report the held-out clustering performance for healthy
control patients and patients with PD. We use disease status (PD patient or healthy control) as
labels and K = 2 subtypes.
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How well does SubLign recover cluster 
and alignment values on clinical data?

• Observational data from 
Beth Israel Deaconess 
Medical Center (Boston)
• 1,534 heart failure patients 

suffering from heart failure 
• 12 features over time based 

on on echocardiograms
• Validate subtypes based on 

demographic and diagnosis 
data
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Feature A (674) B (444) C (416)

Age 75.98 74.73 69.43
Female 0.71 0.23 0.43
Anemia 0.23 0.16 0.14
Atherosclerosis 0.28 0.34 0.40
Atrial Fibrillation 0.44 0.55 0.43
Chronic Kidney Disease 0.27 0.34 0.34
Diastolic Heart Failure 0.50 0.36 0.06
Obese 0.56 0.65 0.46
Old Myocardial Infarction 0.12 0.14 0.24
Pulmonary Heart Disease 0.29 0.22 0.19
Systolic HF 0.09 0.27 0.53

Figure 11: Subtypes found by SubLign from heart failure patients using echocardiogram biomarkers.
Only statistically significant means between subtypes according to an ANOVA test with p < 0.05
with a Benjamini-Hochberg correction are listed.

Feature A (240) B (802) C (492)

Age 71.567 74.565 73.793
Hyperlipidemia 0.529 0.448 0.541
Chronic Kidney Disease 0.346 0.273 0.370
Esophageal Reflux 0.375 0.259 0.289
Pulmonary Heart Disease 0.367 0.204 0.256
Kidney Disease 0.254 0.200 0.278
Atherosclerosis 0.196 0.131 0.201
Anemia 0.217 0.163 0.213
Obese 0.688 0.500 0.608

Table 7: Heart Failure KMeans+Loss subtypes (patient counts in parentheses), described by mean
baseline features. Only statistically significant features are listed and do not include systolic and
diastolic HF, two known phenotypes of HF.

32

Clusters learned by 
SubLign are 

reasonably sized
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Feature A (674) B (444) C (416)

Age 75.98 74.73 69.43
Female 0.71 0.23 0.43
Anemia 0.23 0.16 0.14
Atherosclerosis 0.28 0.34 0.40
Atrial Fibrillation 0.44 0.55 0.43
Chronic Kidney Disease 0.27 0.34 0.34
Diastolic Heart Failure 0.50 0.36 0.06
Obese 0.56 0.65 0.46
Old Myocardial Infarction 0.12 0.14 0.24
Pulmonary Heart Disease 0.29 0.22 0.19
Systolic HF 0.09 0.27 0.53

Figure 11: Subtypes found by SubLign from heart failure patients using echocardiogram biomarkers.
Only statistically significant means between subtypes according to an ANOVA test with p < 0.05
with a Benjamini-Hochberg correction are listed.

Feature A (240) B (802) C (492)

Age 71.567 74.565 73.793
Hyperlipidemia 0.529 0.448 0.541
Chronic Kidney Disease 0.346 0.273 0.370
Esophageal Reflux 0.375 0.259 0.289
Pulmonary Heart Disease 0.367 0.204 0.256
Kidney Disease 0.254 0.200 0.278
Atherosclerosis 0.196 0.131 0.201
Anemia 0.217 0.163 0.213
Obese 0.688 0.500 0.608

Table 7: Heart Failure KMeans+Loss subtypes (patient counts in parentheses), described by mean
baseline features. Only statistically significant features are listed and do not include systolic and
diastolic HF, two known phenotypes of HF.
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Feature A (674) B (444) C (416)

Age 75.98 74.73 69.43
Female 0.71 0.23 0.43
Anemia 0.23 0.16 0.14
Atherosclerosis 0.28 0.34 0.40
Atrial Fibrillation 0.44 0.55 0.43
Chronic Kidney Disease 0.27 0.34 0.34
Diastolic Heart Failure 0.50 0.36 0.06
Obese 0.56 0.65 0.46
Old Myocardial Infarction 0.12 0.14 0.24
Pulmonary Heart Disease 0.29 0.22 0.19
Systolic HF 0.09 0.27 0.53

Figure 11: Subtypes found by SubLign from heart failure patients using echocardiogram biomarkers.
Only statistically significant means between subtypes according to an ANOVA test with p < 0.05
with a Benjamini-Hochberg correction are listed.

Feature A (240) B (802) C (492)

Age 71.567 74.565 73.793
Hyperlipidemia 0.529 0.448 0.541
Chronic Kidney Disease 0.346 0.273 0.370
Esophageal Reflux 0.375 0.259 0.289
Pulmonary Heart Disease 0.367 0.204 0.256
Kidney Disease 0.254 0.200 0.278
Atherosclerosis 0.196 0.131 0.201
Anemia 0.217 0.163 0.213
Obese 0.688 0.500 0.608

Table 7: Heart Failure KMeans+Loss subtypes (patient counts in parentheses), described by mean
baseline features. Only statistically significant features are listed and do not include systolic and
diastolic HF, two known phenotypes of HF.
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Feature A (674) B (444) C (416)

Age 75.98 74.73 69.43
Female 0.71 0.23 0.43
Anemia 0.23 0.16 0.14
Atherosclerosis 0.28 0.34 0.40
Atrial Fibrillation 0.44 0.55 0.43
Chronic Kidney Disease 0.27 0.34 0.34
Diastolic Heart Failure 0.50 0.36 0.06
Obese 0.56 0.65 0.46
Old Myocardial Infarction 0.12 0.14 0.24
Pulmonary Heart Disease 0.29 0.22 0.19
Systolic HF 0.09 0.27 0.53

Figure 11: Subtypes found by SubLign from heart failure patients using echocardiogram biomarkers.
Only statistically significant means between subtypes according to an ANOVA test with p < 0.05
with a Benjamini-Hochberg correction are listed.

Feature A (240) B (802) C (492)

Age 71.567 74.565 73.793
Hyperlipidemia 0.529 0.448 0.541
Chronic Kidney Disease 0.346 0.273 0.370
Esophageal Reflux 0.375 0.259 0.289
Pulmonary Heart Disease 0.367 0.204 0.256
Kidney Disease 0.254 0.200 0.278
Atherosclerosis 0.196 0.131 0.201
Anemia 0.217 0.163 0.213
Obese 0.688 0.500 0.608

Table 7: Heart Failure KMeans+Loss subtypes (patient counts in parentheses), described by mean
baseline features. Only statistically significant features are listed and do not include systolic and
diastolic HF, two known phenotypes of HF.

32

Diastolic (A) and 
systolic (C) heart 
failure are known 

subtypes. 

B has patient from 
both diastolic and 

systolic heart failure.

Shah et al, Phenomapping for novel classification of heart failure with preserved ejection fraction, Circulation 2014.
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Feature A (674) B (444) C (416)

Age 75.98 74.73 69.43
Female 0.71 0.23 0.43
Anemia 0.23 0.16 0.14
Atherosclerosis 0.28 0.34 0.40
Atrial Fibrillation 0.44 0.55 0.43
Chronic Kidney Disease 0.27 0.34 0.34
Diastolic Heart Failure 0.50 0.36 0.06
Obese 0.56 0.65 0.46
Old Myocardial Infarction 0.12 0.14 0.24
Pulmonary Heart Disease 0.29 0.22 0.19
Systolic HF 0.09 0.27 0.53

Figure 11: Subtypes found by SubLign from heart failure patients using echocardiogram biomarkers.
Only statistically significant means between subtypes according to an ANOVA test with p < 0.05
with a Benjamini-Hochberg correction are listed.

Feature A (240) B (802) C (492)

Age 71.567 74.565 73.793
Hyperlipidemia 0.529 0.448 0.541
Chronic Kidney Disease 0.346 0.273 0.370
Esophageal Reflux 0.375 0.259 0.289
Pulmonary Heart Disease 0.367 0.204 0.256
Kidney Disease 0.254 0.200 0.278
Atherosclerosis 0.196 0.131 0.201
Anemia 0.217 0.163 0.213
Obese 0.688 0.500 0.608

Table 7: Heart Failure KMeans+Loss subtypes (patient counts in parentheses), described by mean
baseline features. Only statistically significant features are listed and do not include systolic and
diastolic HF, two known phenotypes of HF.
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Clinical literature 
suggests that 

women1 and obese2

patients may 
manifest heart failure 

differently

[1] Duca et al, Scientific Reports 2018. [2] Tadic and Cuspidi, Heart Failure Reviews 2019.
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[1] Duca et al, Scientific Reports 2018. [2] Tadic and Cuspidi, Heart Failure Reviews 2019.



How can we accommodate differences in 
access to care?

1. Model access to care as a latent variable

2. Design deep generative model to infer disease 
subtyping and alignment

3. Prove conditions under which disease subtyping 
is identifiable

4. Algorithm improves over baselines in synthetic 
setting and validates known subtypes on real-
world data
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Machine Learning for Equitable Healthcare

Chen et al, “Ethical Machine Learning for Health Care,” Annual Reviews for Biomedical Data Science 2021.

1. Early detection for 
intimate partner 
violence (PSB 2021)

2. Treating health 
disparities with AI 
(Nature Medicine 
2020)

Correcting for 
patient access to 
care (AAAI 2022)

1. Bias auditing (AMA 
Journal of Ethics 
2019, Nature 
Medicine 2021)

2. Mitigating algorithmic 
bias (NeurIPS 2018)

Collecting and 
researching 
insurance risk 
scores (ongoing)

Assessing different 
quality labels in 
intimate partner 
violence (ongoing)
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