Machine Learning Approaches for Equitable Healthcare

Irene Y. Chen

PhD Student, Electrical Engineering and Computer Science

July 8, 2022

Why ML for healthcare?

Why ML for healthcare?

Electronic Medical Records Genomics

Medical Imaging

Signals

Molecular Data

Wearable Data

Why ML for healthcare?

Why is machine learning for healthcare challenging?

Why is machine learning for healthcare challenging?

- Healthcare data are limited and sparse
 - Data for prediction models can have over 50% of values missing.¹
 - Data sparsity can itself have patterns, e.g. time of lab test.²
- Treatment variation across hospitals and clinicians,³ even for the same patient.⁴
- Healthcare knowledge changes all the time.
 - 13% of medical practice papers are reversals.⁵

[1] Pantalone et al, Diabetes Medicine 2012; [2] Agniel et al, BMJ 2018; [3] Coburn et al, Breast Journal 2008; [4] Sporer et al, American Academy of Orthopaedic Surgeons 2006; [5] Prasad et al, JAMA Internal Medicine

Why is equitable healthcare challenging?

- Healthcare system has existing health disparities, for example maternal morbidity in Black women¹
- Uneven sample sizes in data: 96% participants in GWAS datasets are of European descent²
- Subpopulations can face differences in data distributions, including differences in heart attack symptoms and care³
- Biased systems and biased datasets create **algorithmic bias**⁴

[1] NYC Government, <u>Maternal Morbidity Report</u>; [2] Need and Goldstein, Trends in Genetics 2009; [3] Goldberg et al, American Heart Journal 1998; [4] Obermeyer et al, *Science 2019.*

Machine Learning for Equitable Healthcare

Chen et al, "Ethical Machine Learning for Health Care," Annual Reviews for Biomedical Data Science 2029.

Machine Learning for Equitable Healthcare

Chen et al, "Ethical Machine Learning for Health Care," Annual Reviews for Biomedical Data Science 2029.

Today's Talk

1. How can we **decompose** sources of **discrimination**? (NeurIPS 2018)

2. How can we **proactively build algorithms** that account for differences in access to care? (AAAI 2022)

Chen, Johansson, Sontag, "Why is My Classifier Discriminatory?," NeurIPS 2018.

Motivation: Risk Stratification for Clinical Interventions

- Examples include APGAR score for **newborns**
- Risk stratification algorithms help clinicians choose interventions in real-time
- However, risk scores face new scrutiny as some are shown to generate divergent risk estimates for patients with identical risk profiles but different races.

Intensive Care Unit Mortality Prediction

Intensive Care Unit Mortality Prediction

How do we define fairness?

- We define fairness in the context of loss like false positive rate, false negative rate, etc.
- For outcome *Y* and prediction \hat{Y} on data *D*, **zero-one loss** is: $\gamma_a(\hat{Y}, Y, D) := P_D(\hat{Y} \neq Y \mid A = a)$
- We can then formalize **unfairness as** group differences.

$$\overline{\Gamma}(\widehat{Y}) := |\gamma_1 - \gamma_0|$$

Bias, variance, and noise

	Description	How to fix
Bias	How well model fits data	Change model class
Variance	How much sample size affects accuracy	Increase training data size
Noise	Error independent of model class and sample size	Increase number of features

Error from variance can be solved by collecting more samples.

Error from bias can be solved by changing the model class.

Error from **noise** can be solved by **more informative feature spaces**.
Contribution: Sources of unfairness

"unfairness"

$$\overline{\Gamma} = |(\overline{B}_1 - \overline{B}_0) + (\overline{V}_1 - \overline{V}_0) + (\overline{N}_1 - \overline{N}_0)|$$

difference in bias difference in variances difference in noise

How can we realistically estimate \overline{B}_a , \overline{V}_a , and \overline{N}_a ?

Contribution: Estimation Techniques

	Description	How to estimate	How to fix
Bias	How well model fits data	Experiment with model complexity	Change model class
Variance	How much sample size affects accuracy	Fit inverse power law from subsampling	Increase training data size
Noise	Error independent of model class and sample size	Estimate Bayes error with distance metrics	Increase number of features

Mortality prediction from MIMIC-III clinical notes

Hispanic

٠

Black

Asian

By subsampling data, we fit inverse power laws to estimate the benefit of **more data** and <u>reducing</u> variance.

Other

White

Mortality prediction from MIMIC-III clinical notes

Using topic modeling, we identified **subpopulations** to gather more features to <u>reduce noise</u>.

Other

White

 \star

Collaboration: Independence Blue Cross

- Partnership with Independence Blue Cross, a health insurer based in Philadelphia
- Working to audit the case management algorithms and relevant subcomponents, including likelihood of hospitalization and high-risk pregnancy

How can we audit and address algorithmic bias?

1. Decompose sources of discrimination into statistical bias, variance, noise

- 2. Propose **practical actions** for detecting these components and mitigating discrimination
- 3. Techniques useful for other **high-stakes settings** including finance data, education data, or climate data

Machine Learning for Equitable Healthcare

 Equity Audits for Machine Learning <u>Chen</u>, Johansson, Sontag. (NeurIPS 2018) <u>Chen</u>, Szolovits, Ghassemi. (AMA Journal of Ethics 2019) Seyyed-Kalantari, Liu, McDermott, <u>Chen</u>, Ghassemi. (Nature Medicine 2021) <u>Chen</u>, Agrawal, Horng, Sontag. (PSB 2020)

- 2. Machine Learning for Equity
 - Chen, Krishnan, Sontag. (AAAI 2022)
 - Chen, Joshi, Ghassemi. (Nature Medicine 2020)
 - Chen, Alsentzer, Park, Thomas, Gosangi, Gujrathi, Khurana. (PSB 2021)
 - Chen, Pierson, Rose, Joshi, Ferryman, Ghassemi. (Annual Reviews for
 - **Biomedical Data Science 2021)**

How can we build algorithms that account for differences in access to care?

Chen, Krishnan, Sontag, "Clustering Interval-Censored Time-Series for Disease Phenotyping," AAAI 20225.

Systemic Health Disparities

Disparities in access to care

 Rural hospitals closing, insurance coverage, trust in healthcare system, medical adherence

Disparities in treatment

• Different treatments for same conditions, same treatments for different physiological systems

Disparities in outcomes

 Life expectancy by socioeconomic status, maternal morbidity/mortality by race

Motivation: Disease Subtyping

Many diseases are biologically heterogeneous despite a common diagnosis

Nissen et al, Journal of Asthma and Allergy 2018; Kohane et al, PLoS One, 2012; Mayo Clinic

Our goal is to find disease subtypes

- Subtypes are "similar" patients
- Subtypes are useful tools to design patient treatments or expand understanding of human health
- We want to account for systemic health disparities

Disease Initiation

A and B have very similar patient profiles! They should be assigned to the same cluster.

Data is collected in a **censored interval** for each patient

How can we learn disease subtyping?

- Option 1: Manually re-align the subtypes
 - Clinician time is expensive
 - Time-consuming for large datasets
- Option 2: Ignore alignment in learning subtypes
 - Subtypes may learn interval censoring instead of biologically interesting findings
- Option 3: Incorporate alignment into a statistical model used for clustering
 - Explicitly *disentangle* between subtype identity and alignment

How can we learn disease subtyping?

- Option 1: Manually re-align the subtypes
 - Clinician time is expensive
 - Time-consuming for large datasets
- Option 2: Ignore alignment in learning subtypes
 - Subtypes may learn interval censoring instead of biologically interesting findings
- Option 3: Incorporate alignment into a statistical model used for clustering
 - Explicitly *disentangle* between subtype identity and alignment

Option 2: Assume time-series start at the same stage of disease progression.

Option 2: We may inadvertently cluster based on **disease stage** instead of biologically interesting clusters.

How can we learn disease subtyping?

- Option 1: Manually re-align the subtypes
 - Clinician time is expensive
 - Time-consuming for large datasets
- Option 2: Ignore alignment in learning subtypes
 - Subtypes may learn interval censoring instead of biologically interesting findings
- Option 3: Incorporate alignment into a statistical model used for clustering
 - Explicitly *disentangle* between subtype identity and alignment

SubLign is a deep generative model that jointly learns patient subtype and alignment

 $P_{\theta_1} = P_{\theta_2} \quad \Rightarrow \quad \theta_1 = \theta_2$

for all $\theta_1, \theta_2 \in \Theta$.

Variational inference to approximate likelihood

Identifiability results show sufficient conditions

Play a Part in Parkinson's Research

Experiment results recover known clinical findings

How can we model the clinical data?

Similar patients are close together in **latent representation** space. Subtypes can be found by clustering the continuous space.

SubLign: Subtype and Alignment

We want to learn heterogeneity that corrects for a latent alignment value

Observed Times X SubLign Data Generation Biomarkers Y Disease Heterogeneity Z $\mathbf{y} \sim p_{\theta}(\overline{\mathbf{y}}|\mathbf{z},\mathbf{x},\boldsymbol{\delta})$ $\Theta_i = g(z_i)$ $\overline{y_{i,m}} = f(x_{i,m} + \delta_i; \Theta_i)$ $\mathbf{z} \sim N(0, \mathbb{I})$ Alignment Value δ **Data Space** 62

Observed Times X SubLign Representation Inference Biomarkers Y

SubLign Model Architecture

Identifiability: When can we recover the correct subtypes?

A, B, and C look so similar that it might be impossible to discover the correct subtypes. Censoring Events [] = Censoring = Unobserved = Severe Biomarker Severity = Mild = Severe

Identifiability: When can we recover the correct subtypes?

• Theoretical question: Are there situations where we can reliably disentangle subtype from alignment time?

Identifiability: When can we recover the correct subtypes?

• Theoretical question: Are there situations where we can reliably disentangle subtype from alignment time?

 Yes! We can prove identifiability under a noiseless, parameterized version of SubLign

How do we evaluate SubLign?

1. Clustering

- Adjusted Rand index (ARI): quantitative measure of label concordance
- We lack ground truth in baseline data, so we use baseline data (not included in SubLign) to validate known clinical findings

2. Alignment

- Swaps metric: How many swaps to get values in correct order, as a percent?
- **Pearson correlation coefficient**: How correlated are the aligned values and the true values?

	Cluster performance	Alignment performance	Alignment performance
Model	$\mathrm{ARI}\uparrow$	Swaps \downarrow	Pearson \uparrow

		Cluster performance	Alignment performance	Alignment performance
SubLign outperforms deep generative model without alignment	Model	$\mathrm{ARI}\uparrow$	Swaps \downarrow	Pearson \uparrow
	SubLign SubNoLign	$m{0.94 \pm 0.02} \ 0.81 \pm 0.21$	$\begin{array}{c} \textbf{0.09} \pm \textbf{0.00} \\ -\end{array}$	0.85 ± 0.04 _

		Cluster performance	Alignment performance	Alignment performance
SubLign	Model	$\mathrm{ARI}\uparrow$	$\mathrm{Swaps}\downarrow$	Pearson \uparrow
outperforms greedy approach of clustering then aligning	SubLign	$\boldsymbol{0.94} \pm \boldsymbol{0.02}$	$\boldsymbol{0.09} \pm \boldsymbol{0.00}$	$\boldsymbol{0.85} \pm \boldsymbol{0.04}$
	KMeans+Loss	0.67 ± 0.04	0.21 ± 0.03	0.49 ± 0.01

		Cluster performance	Alignment performance	Alignment performance
	Model	$\mathrm{ARI}\uparrow$	Swaps \downarrow	Pearson \uparrow
	SubLign	$\boldsymbol{0.94} \pm \boldsymbol{0.02}$	$\boldsymbol{0.09}\pm\boldsymbol{0.00}$	$\boldsymbol{0.85}\pm\boldsymbol{0.04}$
SubLign outperforms algorithms	SuStaIn	0.66 ± 0.02	0.16 ± 0.00	0.30 ± 0.02
assuming cross- sectional data	PAGA	0.32 ± 0.05	0.52 ± 0.07	0.04 ± 0.20
and linear data				72

		Cluster performance	Alignment performance	Alignment performance
	Model	$\mathrm{ARI}\uparrow$	$\mathrm{Swaps}\downarrow$	Pearson \uparrow
	SubLign	$\boldsymbol{0.94} \pm \boldsymbol{0.02}$	$\boldsymbol{0.09} \pm \boldsymbol{0.00}$	$\boldsymbol{0.85}\pm\boldsymbol{0.04}$
SubLign outperforms algorithm with Bayesian model assumptions	BayLong	0.19 ± 0.18	0.48 ± 0.00	0.01 ± 0.02
SubLign outperforms → baselines!		Cluster performance	Alignment performance	Alignment performance
--	----------------------------	---	---	---
	Model	$\mathrm{ARI}\uparrow$	$\mathrm{Swaps}\downarrow$	Pearson \uparrow
	SubLign	$\boldsymbol{0.94} \pm \boldsymbol{0.02}$	$\boldsymbol{0.09} \pm \boldsymbol{0.00}$	$\boldsymbol{0.85} \pm \boldsymbol{0.04}$
	$\operatorname{SubNoLign}$	0.81 ± 0.21		_
	KMeans+Loss	0.67 ± 0.04	0.21 ± 0.03	0.49 ± 0.01
	SuStaIn	0.66 ± 0.02	0.16 ± 0.00	0.30 ± 0.02
	BayLong	0.19 ± 0.18	0.48 ± 0.00	0.01 ± 0.02
	PAGA	0.32 ± 0.05	0.52 ± 0.07	0.04 ± 0.20
	(Including 4 other	r baselines)		

- Observational data from Beth Israel Deaconess Medical Center (Boston)
- 1,534 heart failure patients suffering from heart failure
- 12 features over time based on on echocardiograms
- Validate subtypes based on demographic and diagnosis data

Clusters learned by SubLign are reasonably sized

	FEATURE	A (674)	B (444)	C (416)
<u>11 features</u> (of 24) are statistically significant based on an ANOVA test with p<0.05 with a Benjamini-Hochberg correction	Age Female Anemia Atherosclerosis Atrial Fibrillation Chronic Kidney Disease Diastolic Heart Failure Obese Old Myocardial Infarction Pulmonary Heart Disease			
	Systolic Heart Failure			

We report cluster means for each feature

FEATURE	A (674)	B (444)	C (416)
Age	75.98	74.73	69.43
Female	0.71	0.23	0.43
Anemia	0.23	0.16	0.14
Atherosclerosis	0.28	0.34	0.40
Atrial Fibrillation	0.44	0.55	0.43
Chronic Kidney Disease	0.27	0.34	0.34
Diastolic Heart Failure	0.50	0.36	0.06
Obese	0.56	0.65	0.46
Old Myocardial Infarction	0.12	0.14	0.24
Pulmonary Heart Disease	0.29	0.22	0.19
Systolic Heart Failure	0.09	0.27	0.53

Diastolic (A) and systolic (C) heart failure are known subtypes.

B has patient from both diastolic and systolic heart failure.

FEATURE	A (674)	B (444)	C(416)
Age	75.98	74.73	69.43
Female	0.71		
Anemia			
Atherosclerosis		0.34	
Atrial Fibrillation			
Chronic Kidney Disease	0.27	0.34	
Diastolic Heart Failure	0.50	0.36	0.06
Old Myocardial Infarction			
Pulmonary Heart Disease			
Systolic Heart Failure	0.09	0.27	0.53

Shah et al, Phenomapping for novel classification of heart failure with preserved ejection fraction, Circulation 2014.

Clinical literature suggests that **women¹** and **obese²** patients may manifest heart failure differently

FEATURE	A (674)	B (444)	C(416)
Age	75.98	74.73	69.43
Female	0.71	0.23	0.43
Anemia			
Atherosclerosis		0.34	
Atrial Fibrillation			
Chronic Kidney Disease	0.27	0.34	
Diastolic Heart Failure		0.36	
Obese	0.56	0.65	0.46
Old Myocardial Infarction			
Pulmonary Heart Disease			
Systolic HF	0.09	0.27	0.53

[1] Duca et al, Scientific Reports 2018. [2] Tadic and Cuspidi, Heart Failure Reviews 2019.

Clinical literature suggests that **women¹** and **obese²** patients may manifest heart failure differently

Article Open Access Published: 18 January 2018

Gender-related differences in heart failure with preserved ejection fraction

Franz Duca, Caroline Zotter-Tufaro, Andreas A. Kammerlander, Stefan Aschauer, Christina Binder, Julia Mascherbauer & Diana Bonderman

Scientific Reports 8, Article number: 1080 (2018) Cite this article 3722 Accesses 30 Citations Metrics

Review > Heart Fail Rev. 2019 May;24(3):379-385. doi: 10.1007/s10741-018-09766-x.

Obesity and heart failure with preserved ejection fraction: a paradox or something else?

Marijana Tadic¹, Cesare Cuspidi²

Affiliations + expand PMID: 30610456 DOI: 10.1007/s10741-018-09766-x

[1] Duca et al, Scientific Reports 2018. [2] Tadic and Cuspidi, Heart Failure Reviews 2019.

How can we accommodate differences in access to care?

1. Model access to care as a latent variable

- 2. Design **deep generative model** to infer disease subtyping and alignment
- 3. Prove conditions under which disease subtyping is **identifiable**
- Algorithm improves over baselines in synthetic setting and validates known subtypes on realworld data

Machine Learning for Equitable Healthcare

Chen et al, "Ethical Machine Learning for Health Care," Annual Reviews for Biomedical Data Science 2023.

Acknowledgements

David Sontag

Pete Szolovits

Marzyeh Ghassemi

Co-authors and Mentors

Clinical Machine Learning Group

Clinical Machine Learning Group

Friends!

MPLICUTE

Family

